Partnership Characteristics within Large Software Ecosystems

Joey van Angeren¹, Jaap Kabbedijk¹, Slinger Jansen¹, and Karl Michael Popp²

¹ Department of Information and Computer Sciences, Utrecht University
Princetonplein 5, 3508 TB Utrecht, the Netherlands
{j.vanangeren,j.kabbedijk,s.jansen}@cs.uu.nl

² SAP AG, Corporate Development
Dietmar-Hop-Allee 16, 69190 Walldorf, Germany
karl.michael.popp@sap.com

Abstract. Ecosystem participant clusters are a powerful tool for large software ecosystems to manage clusters within their ecosystems. Two examples of ecosystem participant clusters are partnership models and membership models. An ecosystem participant cluster consists of a set of commitments between cluster owner and participant, this paper discusses the identifying characteristics of those commitments. A taxonomy is created to describe the structure of an ecosystem participant cluster. This taxonomy includes the role fulfilled by the participant within this commitment, also including the dimension of the role as well as resulting benefits, requirements and costs. Furthermore, the taxonomy and three case studies form the basis for a classification of ecosystem participant clusters, using a set of characteristics to identify the main differences between clusters used within the industry. These differences include different forms of model governance, entry barriers and goals for the three respective clusters.

Key words: software ecosystems, partner ecosystems, partnership characteristics, partnership models, membership models

1 Introduction

Software vendors and platform owners act within a network of actors relevant to their business, called a software ecosystem. We define a software ecosystem as; “a set of actors functioning as a unit and interacting with a shared market for software and services, together with the relationships among them”[8]. A software vendor’s software ecosystem consists of multiple subsystems, for example, a supplier ecosystem that contains all their suppliers and a partner ecosystem[12]. Examples of actors within this partner ecosystem are software partners and system integrators.

Large software ecosystems frequently choose to engage into a set of partnerships in the search for mutual benefits. Some large software ecosystems expand this principle to a larger scale by creating a cluster of organizations around themselves. Organizations, such as software vendors, platform owners and open
source associations have different methods to manage these clusters of participants in their ecosystems. In this paper, two of these methods are discussed in the form of partnership models and membership models.

A partnership model is owned by a software vendor or platform owner to sustain, manage, cluster and expand their partner ecosystem and therefore the number of actors within this ecosystem. A partnership model offers organizations the possibility to engage into a partnership with a major software vendor or platform owner. In this model, the partner fulfills one or more roles that brings a certain set of predefined benefits. To be able to obtain or retain a certain role, the partner has to comply to a certain set of requirements and possibly has to pay fees to the model owner. Open source associations and platform owners offer a similar model to sustain, manage, cluster and expand their software ecosystem. Because of the different legal form of those organizations, actors within these clusters are members that are part of the membership model. Partnership and membership models are examples of big clusters of participants within one or more areas of the software ecosystem. Because of this, we will refer to partnership or membership models as ecosystem participant clusters, referring to the typical clustering characteristic of those models.

The emphasis of this paper is on the structure of ecosystem participant clusters within the software industry and the identifying characteristics of commitments within those clusters. The results are formulated around a taxonomy that captures the structure of such a cluster. Three case studies of large software ecosystems owning an ecosystem participant cluster, that are representative for those within the industry, provide support for the findings presented in this paper. The cases will also be used to identify the main differences between a partnership and a membership model through classification.

2 Research Approach

The main research question of this article is as follows; “What are the identifying characteristics of a commitment within an ecosystem participant cluster?” To be able to answer this research question, a combination of literature research and case studies is carried out. The gathered data from literature research and documentation, large software ecosystems provide on their ecosystem participant cluster (e.g. website, contracts), are used to create a taxonomy to describe the general structure of an ecosystem participant cluster. The taxonomy is created by applying design science [4], a cycle that is based on a continuous process of developing, assessing evaluations and refining the created deliverable. After constructing the taxonomy according to findings from literature, expert reviews and case studies were employed to evaluate the constructed taxonomy, according to which modifications have been made. Furthermore, this taxonomy is the basis for a large number of characteristics identified and used for a classification of multiple partnership and membership models that exist within the industry.

Ecosystem participant clusters from three large software ecosystems, that are representative for those owned within the software industry, are used as
cases for this paper. Available documentation (e.g. website, contracts) on the models offered by SAP, Open Design Alliance and Eclipse Foundation as well as interviews with representatives from the three respective companies are used as sources of information. The three models are compared to identify the main similarities and differences between them. We chose for a multiple case design [13] approach to provide a diverse set of results.

3 Ecosystem participant clusters

Software ecosystems exist around one particular software vendor or platform owner. Jansen et al. [7] define multiple types of software ecosystems by the way in which they are centered around one or more specific actors, for example; market, technology, platform and firm software ecosystems. Out of these four types of software ecosystems, the platform software ecosystem and firm software ecosystem are relevant for this paper. In case the software ecosystem forms around a platform, the platform owner becomes the keystone [6] in the software ecosystem. On the other hand, a software ecosystem can exist around one particular software vendor, for example the Microsoft or SAP software ecosystem. One component of this software ecosystem is the partner ecosystem, where various partners are clustered.

A software vendor can have a wide range of goals with its ecosystem. Popp [11] defines in a simplified setting five different types of goals a software vendor or platform owner might have; financial, customer related, product related, network related and market related goals. Since the partnership ecosystem is a component of the software ecosystem, those goals also apply for the partner ecosystem. One or more of these goals can be achieved through the use of an ecosystem participant cluster and are formulated within the business model. Most prior research on partnership ecosystem goals has been emphasized on product and market related goals. Bosch [1] for example, elaborates in detail on ways to achieve product related goals, by making partners co-innovate products from the software vendor, by taking up the role of a value-added reseller or by letting partners develop further functionality on top of the software vendor’s platform or product. Cusumano [3] opts for a similar approach to reach product related goals and advises companies to use partnering as a tool to extend their market reach. While partnering is about the search for mutual (strategic) advantages, little research exists on partnering out of a software vendor’s or system integrator’s perspective. Neither for research that elaborates on the benefits, disadvantages and risks of fulfilling one or more roles in a partnership model.

Organizing a large amount of participants around an organization in a cluster is a practice that happens not only within the software industry. The clustering of participants is also a common phenomenon in other business areas, like the automotive industry [10, 9, 2]. While the principle of clustering participants around an organization is similar, as well as a certain amount of co-innovation opportunities, in this industry the clustering of participants is mainly focussed on the (cooperative) buyer-supplier or manufacturer-distributor relationship.
4 A taxonomy for ecosystem participant clusters

Because of the character of an ecosystem participant cluster, it requires a governance structure to keep it manageable. The ecosystem participant cluster consists out of multiple levels or roles in which the participants are clustered. Within this cluster, every participant has one or more roles with predefined requirements, benefits and costs. While in practice multiple ecosystem participant clusters from different software vendors, platform owners or open source associations differ from each other, the main principles behind it are the same. Based on this, the core structure of the different models used in practice are similar or consist of the same core elements. With this observation and to illustrate this, a taxonomy is created to give a visual representation of the typical structure of an ecosystem participant cluster owned and utilized within the software industry. The model is created on a type level, in Unified Modelling Language using modelling techniques similar to those used in [5].

![Fig. 1. Taxonomy of an ecosystem participant cluster](image-url)
Figure 1 contains a taxonomy that describes the structure of an ecosystem participant cluster within the software industry. An ecosystem participant cluster is described by a name, a description and an owner. Every ecosystem participant cluster can be classified by a cluster type. The type that classifies the cluster influences the general structure and restricts the commitment possibilities that exist within the offered cluster. The ecosystem participant cluster consists of partnerships or memberships with organizations wishing to engage in them.

An organization can engage in one or multiple commitments with the model owner in which it fulfills a role. Each partnership or membership has a unique contract which is a commitment between two legal entities, the cluster owner and the organization that engages in the commitment. In practice this means that, for every role an organization fulfills within an ecosystem participant cluster, a separate contract will be signed by both legal entities. A role within the cluster is characterized by a name and a description and can have zero, one or more dimensions. This can be best explained by an example. A software vendor owns a partnership model that is hierarchical, the primary structure consists of three levels (i.e. Bronze, Silver and Gold). Within these levels there is a next level of decomposition, a horizontal one in which partners are organized by their respective functions (e.g. system integrator, value-added reseller). This means there are partners that fulfill a role as a bronze level system integrator and other partners fulfill the role of a gold level system integrator.

Furthermore, every single role has a set of predefined benefits for an organization. On average a wide range of benefits is offered or expected, ranging from marketing benefits or coaching to getting access to the source code of software products for the highest level partners or members within some models. To receive those benefits, a set of requirements have to be met by the participant in order to be eligible to fulfill or to keep a certain role. The requirements that an organization has to meet may be defined by some of the specific organizational characteristics of the participant. Geographic location or total corporate revenue for example might influence the requirements to be met. Furthermore, requirements for a system integrator might differ for those of a value-added reseller even if they have the same role within the model.

An organization that is willing to become part of the partner or software ecosystem pays to be eligible to fulfill a certain role. Exceptions to this are educational and community memberships, in which participants get small benefit from or contribute to the community of organizations that are active within the ecosystem participant cluster. Usually an annual fee has to be paid at the contract renewal date, however, model entrance fees as well as additional fees might be applicable. In some cases, specific characteristics of the organization might affect the costs for engaging in a partnership or membership. Companies with different geographic locations or a different total corporate revenue might pay different fees, as stated in predefined tables or scales.
5 Case Studies

Three large software ecosystems, each possessing their own ecosystem participant cluster, that are representative for those within the software industry, have been selected as case studies for this paper. Each case study started out with studying the documentation on the respective model that is publicly available (e.g. website, contract). With the gathered knowledge as a basis, semi-structured interviews were held with an expert from each of the three organizations to gather additional information regarding their ecosystem participant cluster. The case studies are used to further verify the taxonomy as well as to gather additional information about the three respective clusters.

5.1 Case Study: SAP

SAP is a major player within the global enterprise application software market with their platform, products and services. The partner ecosystem is a substantial component of the SAP software ecosystem and is managed by their own partnership models. Those include a global partnership model and several region-specific partnership models. The global partnership model is constructed around ten different function-based roles targeting specific type of partners, like service providers, software partners and value-added resellers. Within some of these roles dividing partners further into market- or function-based categories is possible, this is however not regarded as a second dimension within the model. Furthermore, the model contains one, more general, umbrella role; the SAP PowerEdge Partner Program. In the SAP partnership model, partners can fulfill more than one function-specific role. The partnership model is documented on different parts of the SAP website. Internal documents and contracts are not publicly accessible.

Each role has a specific set of benefits, requirements and costs. Upon request small changes to these sets can be made. Benefits and requirements per role are targeted on specific needs for the type of partner that fulfills a role. Requirements involve completing a certification process for services, tools or software solutions that are somehow related to SAP or the SAP platform. Benefits range from marketing benefits to revenue sharing agreements with SAP, SAP incorporating a solution within their products or getting access to the SAP customer ecosystem, to sell products or to offer additional services. The partnership model is utilized by SAP to reach various goals, ranging from extension of the partner ecosystem, product or platform development and co-innovation to monetizing on the partner ecosystem and extending market reach. SAP actively monitors the performance of their partners, so that good performing partners can progress from certification partners to, for example, resellers.

Apart from the annual partnership fee, the certification process can be regarded as a main entry barrier for the model. A partner has to devote resources to create a product that is eligible to successfully pass the certification process. Furthermore, potential partners are screened on their involvement in or with other platforms. This means that a partnership with SAP becomes a main part
of the business, but on the other hand that also means a partner can lock himself
out of participating in another partnership model within the industry that has
a similar policy.

5.2 Case Study: Open Design Alliance

The Open Design Alliance is best described as an association of developers. The
nonprofit organization develops the Teigha platform, a platform for CAD and
other technical graphics applications. ODA is a member-driven organization and
their membership model, that consists of over 1200 members, is the core of the
organization. Organizations that want to obtain or use the Teigha platform have
to enter the membership model. The membership model of the ODA can be best
described as a layered model without a second level of decomposition. The model
consists of five unique levels. The main benefit of each level is targeted at the
amount of access members have to the Teigha platform. Ranging from the in-
house use of the platform to access to obtaining access to the source code and no
restrictions in the way the platform is used or incorporated. Additional benefits
for each level are mainly targeted at the amount of influence a member has on
the development of the platform or the way in which it wishes to contribute to
the development. Each organization that wants to become part of the model can
only apply for one membership level and customizations to these levels upon
request will not be made.

Apart from the educational membership, which is designed to stimulate re-
search, every membership level requires an annual membership fee to be paid.
When a new member desires to enter the membership model it has to pay a one
time only membership model entrance fee. The additional entrance fee can be
regarded as a raised entry barrier for the membership model, the Open Design
Alliance did however opt for this approach to stimulate members to engage into
long-term commitments. By making all the documentation on the membership
model publicly available, the ODA aims to make the membership model and its
principles as accessible as possible.

The main goal the ODA has with their membership model is the expansion
of the Open Design Alliance software ecosystem. Another goal ODA has with
their membership model is the development of their platform, a product related
goal. The majority of membership model fees flow back into development and
in cooperation with members new features or additional functionality can be
incorporated into the platform. The ODA aims for a certain level of empow-
erment between members and platform owner as well as creating a supportive
community around the platform.

5.3 Case Study: Eclipse Foundation

The Eclipse Foundation is a member supported corporation that provides a plat-
form, tools and services for the Eclipse software ecosystem. There are multiple
ways for organizations to contribute to the development of one or more Eclipse
platforms or solutions. They can make donations (financial or resources), can become a corporate sponsor or can become a more prominent part of the Eclipse software ecosystem by becoming a member. If an organization wishes to become a member it will take part in the Eclipse Membership Program.

The Eclipse Membership Program consists of five different levels. The membership model is based on the open source maturity curve. This maturity curve predicts the way in which an organization intensifies their involvement in an open source community over time as it evolves and develops as an organization. Because of this, every next membership level can be considered as superior to the previous one. Therefore, it is highly unlikely that an organization will occupy more than one membership level. Predefined membership levels will not be customized upon request of a potential member, they can only choose to not be publicly listed as a member.

Benefits per membership level range from contributing to the platform or Eclipse solutions, to influence in the overall governance of the Eclipse Foundation, since Strategic members get one seat within the board of directors. Furthermore, higher level members can benefit from industry specific working groups in which fellow members cooperate and co-innovate the Eclipse platform to suit industry specific needs. To maintain or occupy a higher membership level, an annual fee has to be paid. For most membership levels additional requirements have to be met. Organizations will, for example, have to release a solution, with incorporation or extension of the Eclipse platform, within twelve months after becoming a member, or will have to devote a certain number of full-time developers to the development of the Eclipse platform or tools. To lower entry barriers for certain levels, requirements or annual membership fees are adjusted to specific organizational characteristics like the total number of employees or total corporate revenue. The main goals the Eclipse Foundation has with their membership model are further expanding the Eclipse software ecosystem, the development of the Eclipse Foundation platform and tools as well as getting a higher level of involvement from actors within the software ecosystem.

6 A classification of ecosystem participant clusters

To compare the three ecosystem participant clusters, out of the case studies, to identify the main similarities and differences between them, a classification table has been created. Using the taxonomy and the content of the interviews used for the case studies as a basis, a number of characteristics for ecosystem participant clusters are identified. Those have been clustered into relevant categories.

Table 1 contains a classification of the three respective ecosystem participant clusters. It gives an overview of the different characteristics of each of the ecosystem participant clusters, ordered within different categories. As became clear in the case studies, the structure of different ecosystem participant clusters can be described by one taxonomy, regardless the type of platform offered (e.g. open or closed source) or the primary structure of the cluster.
Table 1. Classification of ecosystem participant clusters

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristic</th>
<th>SAP</th>
<th>ODA</th>
<th>Eclipse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>Open/closed source</td>
<td>Closed</td>
<td>Open</td>
<td>Open</td>
</tr>
<tr>
<td>Structure</td>
<td>Layered primary structure</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Role-based primary structure</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Market-based primary structure</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Number of dimensions</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total number of roles/levels</td>
<td>11</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>More than one role/level can be fulfilled by the same organization</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Dependency between organizational characteristics and requirements</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Dependency between organizational characteristics and costs</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Entry Barriers</td>
<td>Model has annual fees</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Model has one time only entrance fees</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Model has roles/levels free of charge</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Devoting resources is regarded as an entry barrier</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Model Governance</td>
<td>Governance includes platform defence</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Roles/Levels are customizable upon request</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Documentation</td>
<td>Model is documented on website</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Contracts are openly accessible</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Goals</td>
<td>Utilized to achieve financial ecosystem goals</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Utilized to achieve customer related ecosystem goals</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Utilized to achieve product related ecosystem goals</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Utilized to achieve network related ecosystem goals</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Utilized to achieve market related ecosystem goals</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Both open source platform owners own an ecosystem participant cluster in the form of a membership model, while SAP owns a partnership model. The membership models have a layered primary structure that is based on increasing involvement of organizations in their contribution to open source projects. This is most explicit in the Eclipse model, which is entirely constructed based on an open source maturity curve. While the layered models are based on contribution to the platform, SAP manages their model out of a business performance point of view. By monitoring the performance of their partners they can choose to up-scale the partnership agreements from a certified partnership to a reseller agreement. This possibility should enrich benefits for both parties in the form of, for example, sharing revenues. Because of this, partners do not progress through levels or roles, they rather evolve within their existing role.
The other differences in characteristics between the three ecosystem participant clusters are caused by the differences in primary structure between the respective clusters. The function-based partnership model has a richer set of roles because it has to suit various business needs, for different kinds of organizations as well as for themselves. For this reason, partners can fulfill more than one role in a partnership model when they provide a wide range of services. In the Eclipse membership model this is theoretically possible as well, this however will not happen because higher levels are regarded superior to previous ones.

One of the important categories of characteristics, besides the structure of the cluster, are the identified entry barriers. Each role or level a participant fulfills or occupies within an ecosystem participant cluster comes with certain costs. All cluster owners charge the participants in their cluster with an annual fee, except for the educational and community roles or memberships that are free of charge. In addition to the annual fees, ODA includes one time only membership entrance fees into their cluster, to both protect their intellectual property and to stimulate members to opt for a long-term commitment.

Furthermore, contributing resources is regarded as a main entry barrier. In both membership models resources will have to be contributed to product and platform development. In the Eclipse model, for example, it can be required for a participant to contribute a number of full-time developers to platform development. The same in a different form goes for the SAP partnership model. To be able to become a partner, an organization has to certify their product or service so that they comply with guidelines provided by SAP. Organizations will have to devote resources in order to do so. Devoting resources to co-innovation with SAP is also a possibility. An additional entry barrier for the SAP partnership model is a result of their model governance. Organizations can lock themselves out of the model by having a high level of involvement with another large software ecosystem (for example as a reseller), while a lot of involvement with SAP can lock them out of models offered by competitors of SAP.

All three software ecosystems aim for a wide range of goals with their ecosystem participant cluster. For all three organizations, network related goals are a main reason to own an ecosystem participant cluster, to utilize this cluster to expand their software or partner ecosystem and therefore the number of actors within this ecosystem. For ODA, their membership model is the core of their business, which makes the model even more prominent to achieve goals. For the membership models, the main goals are product related goals. Both ODA and Eclipse strive to utilize their membership model to develop and innovate their platform. For ODA membership fees flow back into development, while members also actively contribute, by for example, creating new functionality on top of the existing platform. Higher level Eclipse Foundation members contribute full-time resources to the development of the Eclipse platform. In the SAP partnership model, product related goals are less prominent, however, co-innovating with partners to strengthen SAP offerings is a goal strived for.

Financial motives for Eclipse and ODA do exist, because of the membership fees, for SAP those are more prominent. They monetize on their partnership
model by receiving annual fees, but apart from that they strive to create additional revenue streams. Those revenue streams can be a direct result from partner performances within a certain role but can apart from that also be created by reseller or revenue sharing agreements. Market related goals are most relevant for SAP as well. SAP utilizes their partnership model in an attempt to increase market presence through the ecosystem of their partners. Furthermore, they can enter markets leveraging their partners.

The main reason for the identified differences comes with the different legal form, the type of platform and the organizational form of the three respective organizations. SAP is a profit organization, while both ODA and Eclipse are a nonprofit association with members. As a consequence, a membership model offers a set benefits that covers a wider range. Benefits are not limited to platform, financial or strategic related benefits. Rather benefits stretch a wide range, including influence in the actual decision making process within the association. Because of the difference in organizational structure, ODA and Eclipse membership levels are not customizable, while the roles in the SAP partnership models are. Open source associations are slim organizations that aim to reduce administrative pressure by containing a rigid governance regarding customizations.

7 Conclusion and discussion

In this paper, we addressed ways in which large software ecosystems can manage clusters within their ecosystems, through partnership models and membership models. Large software ecosystems can utilize these clusters to achieve goals, depending on their business model. Ecosystem participant clusters consist of commitments between cluster owner and participant. Although partnership and membership models differ from each other, their overall structure is the same. By applying design science, a taxonomy has been created to capture the structure of ecosystem participant clusters. In every commitment within such a cluster, a participant fulfills one or more roles with a predefined set of benefits, requirements and costs. Roles have zero, one or more dimensions enabling organizations to engage into multiple levels of commitments with the cluster owner.

Apart from the created taxonomy, multiple case studies did provide the basis for multiple ecosystem participant cluster characteristics, that form the basis for a classification. Differences were identified in multiple categories of characteristics. Differences in structure are identified, the membership models are layered, while the partnership model is role-based. The way in which participants develop within the model overtime differs. Within membership models, participants progress through levels, while in the partnership model participants evolve within their role. Financial motives, the devotion of resources and a high level of involvement with another platform, are main entry barriers for the clusters that can keep potential participants from actually participating. Furthermore, differences were identified in the way in which large software ecosystems strive to achieve different goals with their ecosystem participant clusters. The majority of differences are examples of ways in which membership models differ from
partnership models, a result of organizations differing from each other in legal form, overall organizational form and the type of platform they own.

Although previous research exists on ecosystem participant clusters, especially partnership models, little research exists out of a participants’ perspective. Since participating in an ecosystem participant cluster affects or changes the business model of a participant, further research has to be edged on advantages, risks perceived as well as disadvantages, resulting from participating within an ecosystem participant cluster. This also includes goals and expectations, organizations have with participating within such a cluster.

References