
An introduction to fixed
parameter tractability and

kernelization

Hans L. Bodlaender

FPT and Kernelization 2

On the topic
• Fixed parameter tractability: recent direction in algorithm

research
• Kernelization: offspring – allows mathematical analysis of

preprocessing for problems
• This talk: informal introduction to central notions

– Simple examples
– Some definitions, proofs, algorithms
– Not much “uncertainty” / ECSQARU problems discussed in this

talk…

Schedule

1. Fixed parameter tractability
2. Hardness
3. Kernelization
4. Kernel lower bounds
5. Conclusions

FPT and Kernelization 3

1

Introduction
Parameterized complexity:

 What is it about

FPT and Kernelization 5

Fixed Parameter Complexity
• Many problems have a parameter
• Many applications have this parameter to be

small
– E.g.: facility location with small number of

facilities (place k hospitals on a large map)
– Structural parameter of input that is likely to be

small
• Sometimes, faster / better algorithms are

possible

FPT and Kernelization 6

Parameterized problem

• Problem with two argument input:
– Given: Some information x, integer k, …
– Parameter: k
– Question: Q(x,k)?

• Many examples ...

FPT and Kernelization 7

Examples of parameterized
problems (1)

Graph Coloring
Given: Graph G, integer k
Parameter: k
Question: Is there a vertex coloring of G with k

colors? (I.e., c: V → {1, 2, …, k} with for all
{v,w}∈ E: c(v) ≠ c(w)?)

• NP-complete, even when k=3.

FPT and Kernelization 8

Clique

• Subset W of the vertices in a graph, such
that each pair has an edge

FPT and Kernelization 9

Examples of parameterized
problems (2)

Clique
Given: Graph G, integer k
Parameter: k
Question: Is there a clique in G of size at least k?

• Solvable in O(nk) time with simple
algorithm. Complicated algorithm gives
O(n2k/3). Seems to require Ω(nf(k)) time…

Simple O(nk) algorithm

• More or less like this:
– For each set S of k vertices in G:

• If S is a clique, then return yes
– (If none returned yes:) return no

• ... hardly anything better known ...

FPT and Kernelization 10

FPT and Kernelization 11

Vertex cover

• Set of vertices W ⊆ V with for all {x,y} ∈
E: x ∈ W or y ∈ W.

• Vertex Cover problem:
– Given G, find vertex cover of minimum size

FPT and Kernelization 12

Examples of parameterized
problems (3)

Vertex cover
Given: Graph G, integer k
Parameter: k
Question: Is there a vertex cover of G of size at

most k?
• Solvable in O(2k (n+m)) time

Idea for algorithm

• Take an edge {v,w}
• In each solution S, we

have v or w (or both)
• If we take v, then this

is similar to looking at
the graph obtained by
removing v and all its
edges

FPT and Kernelization 13

v
w

v
w

v
w

w
v

Vertex Cover in
O(2k (n+m)) time

• Recursive algorithm
• VC(G, k)

– If G has no edges: return yes
– If k == 0: return no
– Choose an edge e = {v,w}
– Let G’ be obtained from G by removing v and all

its edges
– Let G” be obtained from G by removing w and all

its edges
– Return VC(G’,k-1) or VC(G’’,k-1)

FPT and Kernelization 14

FPT and Kernelization 15

Three types of complexity

• When the parameter is fixed
– Still NP-complete (k-coloring, take k=3)
– O(f(k) nc)
– O(nf(k))

FPT and Kernelization 16

Fixed parameter complexity
theory

• To distinguish between behavior:
O(f(k) * nc)
Ω(nf(k))

• Proposed by Downey and Fellows.

FPT and Kernelization 17

Parameterized problems

• Instances of the form (x,k)
– I.e., we have a second parameter

• Decision problem (subset of {0,1}* x N)

• Notation: k is the parameter, n measures
size of x

FPT and Kernelization 18

Fixed parameter tractable
problems

• FPT is the class of problems with an
algorithm that solves instances of the form
(x,k) in time p(|x|)*f(k), for polynomial p
and some function f.
– E.g. O(3k n2), O(k! n), ...

FPT and Kernelization 19

Hard problems

• Complexity classes
– W[1] ⊆ W[2] ⊆ … W[i] ⊆ … W[P]
– Defined in terms of Boolean circuits
– Problems hard for W[1] or larger class are

assumed not to be in FPT
• Compare with P / NP

FPT and Kernelization 20

Examples of hard problems
• Clique and Independent Set are W[1]-complete
• Dominating Set is W[2]-complete
• Version of Satisfiability is W[1]-complete

– Given: set of clauses, k
– Parameter: k
– Question: can we set (at most) k variables to true, and

al others to false, and make all clauses true?

FPT and Kernelization 21

So what is parameterized
complexity about?

• Given a parameterized problem
• Establish that it is in FPT

– And then design an algorithm that is as fast as possible
• Or show that it is hard for W[1] or “higher”

– Try to find a polynomial time algorithm for fixed
parameter

• Or even show that it is NP-complete for fixed
parameters
– Solve it with different techniques (exact or

approximation)

FPT and Kernelization 22

FPT techniques
• Several algorithmic techniques to show that

problems are in FPT
– Branching
– Dynamic programming

• Exploiting structures like tree decompositions (clique trees,
junction trees); linear structure of problem instances ...

– Advanced, specialized techniques:
• Iterative improvement
• Color coding
• ...

FPT and Kernelization 23

Closest string
– Given: k strings s1, …,sk each of length L,

integer d
– Parameter: d
– Question: is there a string s with Hamming

distance at most d to each of s1, …,sk
• Application in molecular biology
• Here: FPT algorithm
• (Gramm and Niedermeier, 2002)

FPT and Kernelization 24

Subproblems

• Subproblems have form
– Candidate string s
– Additional parameter r
– We look for a solution to original problem, with

additional condition:
• Hamming distance at most r to s

• Start with s = s1 and r=d (= original
problem)

FPT and Kernelization 25

Branching step

• Choose an sj with Hamming distance > d to s
• If Hamming distance of si to s is larger than d+r:

NO
• For all positions i where sj differs from s

– Solve subproblem with
• s changed at position i to value sj (j)
• r = r – 1

• Note: we find a solution, if and only one of these
subproblems has a solution

FPT and Kernelization 26

Example

• Strings 01112, 02223, 01221, d=3
– First position in solution will be a 0
– First subproblem (01112, 3)
– Creates three subproblems

• (02113, 2)
• (01213, 2)
• (01123, 2)

FPT and Kernelization 27

Time analysis

• Recursion depth d
• At each level, we branch at most at d + r ≤ 2d

positions
• So, number of recursive steps at most d2d+1

• Each step can be done in polynomial time: O(kdL)
• Total time is O(d2d+1 . kdL)
• Speed up possible by more clever branching and

by kernelisation

FPT and Kernelization 28

Technique

• Try to find a branching rule that
– Decreases the parameter
– Splits in a bounded number of subcases

• YES, if and only if YES in at least one subcase

FPT and Kernelization 29

Color coding

• Interesting algorithmic technique to give
fast FPT algorithms

• As example:
• Long Path

– Given: Graph G=(V,E), integer k
– Parameter: k
– Question: is there a simple path in G with at

least k vertices?

FPT and Kernelization 30

Problem on colored graphs

• Given: graph G=(V,E), for each vertex v a color in
{1,2, … , k}

• Question: Is there a simple path in G with k
vertices of different colors?

– Note: vertices with the same colors may be adjacent.
• Can be solved in O(2k (nm)) time using dynamic

programming
• Used as subroutine…

FPT and Kernelization 31

DP

• Tabulate:
– (S,v): S is a set of colors, v a vertex, such that

there is a path using vertices with colors in S,
and ending in v

– Using Dynamic Programming, we can tabulate
all such pairs, and thus decide if the requested
path exists

We skip
this slide

FPT and Kernelization 32

A randomized variant

• For each vertex v, guess a color in {1, 2, …, k}
• Check if there is a path of length k with only

vertices with different colors
• Note:

– If there is a path of length k, we find one with positive
chance (2k /k!)

– We can do this check in O(2k nm) time
– Repeat the check many times to get good probability

for finding the path

From randomized to
deterministic

• Randomized algorithm:
– Repeat many times:

• Guess colors
• Solve DP; if YES, then return YES

– Return NO
• Derandomization is possible with k-perfect

family of hash functions (replacing
guesses)...

FPT and Kernelization 33

4

Hardness proofs

FPT and Kernelization 37

Remember Cook/Levin
theorem

• NP-completeness helps to distinguish between
decision problems for which we have a
polynomial time algorithm, and those for which
we expect no such algorithm exists

• NP-hard; NP-completeness; reductions
• Cook/Levin theorem: `first’ NP-complete

problem; used to prove others to be NP-complete
• Similar theory for parameterized problems by

Downey and Fellows

FPT and Kernelization 38

Classes
• FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ … ⊆ W[i] ⊆

… ⊆ W[P]
• Theoretical reasons to believe that hierarchy is

strict
• Theorem: If FPT = W[1], then the Exponential

Time Hypothesis does not hold
• ETH (Impagliazzo et al., 1999): There is a δ

such that 3-Satisfiability cannot be solved in
O(2δn) time

Scheme

• Define a notion of reduction
• From the notion of reduction, we get

hardness and completeness
• Generic hard/complete problems +

reduction give new hard/complete problems

FPT and Kernelization 39

FPT and Kernelization 40

Parameterized m-reduction
• Let L, L’ be parameterized problems.
• A standard parameterized m-reduction transforms

an input (I,k) of L to an input (f(I,k), g(k)) of L’
– L((I,k)) if and only if L’((f(I,k), g(k))
– f uses time p(|I|)* h(k) for a polynomial p, and some

function h
• Note: time may be exponential or worse in k
• Note: the parameter only depends on parameter,

not on rest of the input

FPT and Kernelization 41

A Complete Problem
• Classes W[1], … are defined in terms of circuits

(definition skipped here)
• Short Turing Machine Acceptance

– Given: A non-deterministic Turing machine M, input x,
integer k

– Parameter: k
– Question: Does M accept x in a computation with at

most k steps?
• Short Turing Machine Acceptance is W[1]-

complete (compare Cook)
• Note: easily solvable in O(nk+c) time

FPT and Kernelization 42

More complete problems for
W[1]

• Weighted q-CNF Satisfiability
– Given: Boolean formula in CNF, such that each

clause has at most q literals, integer k
– Parameter: k
– Question: Can we satisfy the formula by

making at most k literals true?
• For each fixed q > 1, Weighted q-CNF

Satisfiability is complete for W[1].

FPT and Kernelization 43

Hard problems

• Independent Set, Clique: W[1]-complete
• Dominating Set: W[2]-complete
• Longest Common Subsequence III: W[1]-

complete (complex reduction to Clique)
– Given: set of k strings S1, …, Sk, integer m
– Parameter: k, m
– Question: is there a string S of length m that is a

subsequence of each string Si, 1 ≤ i ≤ k?

Example reduction

• K people have to do n tasks. Each task costs
1 hour. Some tasks have to be done before
some other tasks, and there is a deadline D.

• Can we finish all tasks before D?

FPT and Kernelization 44

Anna

Bert

D

FPT and Kernelization 45

Formal problem

• Precedence constrained K-processor scheduling
– Instance: set of tasks T, each taking 1 unit of time,

partial order < on tasks, deadline D, number of people
that can carry out tasks K

– Parameter: K
– Question: can we carry out the tasks by K people, such

that
• If task1 < task2, then task1 is carried out before task2
• At most one task per time step per person
• All tasks finished at most at time D

FPT and Kernelization 46

Transform from Dominating
Set

• Let G=(V,E), k be instance of DS
• Write n = |V|, c = n2, D = knc + 2n.
• Take the following tasks and precedences:
• Floor: D tasks in “series”:

1 2 3 … … … … D-2 D-1 D

FPT and Kernelization 47

Floor gadgets

• For all j of the form j = n-1+ ac + bn (0 ≤ a
< kn, 1 ≤ b ≤ n), take a task that must
happen on time j (parallel to the jth floor
vertex)

1 2 … j-1 j j+1 … … D-1 D

FPT and Kernelization 48

Selector paths

• We take k paths of length D-n+1
• Each models a vertex from the dominating set
• To some vertices on the path, we also take parallel

vertices:
– If {vi, vj} ∉ E, and i ≠ j, then place a vertex parallel to

the n-1+ac+in-jth vertex for all a, 0 ≤ a < kn

1 … … … … … … … … D-n-1 …

FPT and Kernelization 49

Lemma and Theorem
• Lemma: we can schedule this set of tasks with

deadline D and 2k processors, if and only if G has
a dominating set of size at most k

• Theorem: Precedence constrained k-processor
scheduling is W[2]-hard

• Note: size of instance must depend in polynomial
way on size of G (and hence on k < |V|)

• It is allowed to use transformations where new
parameter is exponential in old parameter

FPT and Kernelization 50

About these hardness
proofs

• Fixed parameter proofs: method of showing
that a problem probably has no FPT-
algorithms

• Often complicated proof 
• But not always 

4

Kernelisation

Preprocessing

• Useful technique for solving problems:
– Preprocess: change instance x to equivalent but

smaller instance y
– Solve the problem on y obtaining solution s’
– Translate s’ back to a solution s for x

• Used very frequently (e.g., CPLEX, sat-
solvers, etc. etc.)

FPT and Kernelization 52

Example 0
• Graph coloring:

– Given: Graph G, number of colors c
– Question: can we vertex color G with at most c colors?

• Heuristic preprocessing: remove vertices with at
most c-1 neigbors, while they exist

• Undoing preprocessing:
– Suppose we have a coloring of the reduced graph
– Add the removed vertices back in reverse order. When

we add a vertex, it has at most c-1 neighbors, so we can
color it now.

FPT and Kernelization 53

FPT and Kernelization 54

2 colors
solve

Add back Color available

Add back
Color available

Done

The area of Kernelization

• Central question: what can we say about the
size of a resulting instance?

• What we cannot hope for:
– An algorithm that always reduces the size of the

input to a smaller equivalent one?
– Why not ... ?

FPT and Kernelization 55

Kernelization

• Preprocessing that is:
– Safe: the answer to the question does not

change
– Guarantee on size of resulting input as function

of a parameter
– Fast (polynomial time)

• We look at decision problems (answer yes
or no)

FPT and Kernelization 56

FPT and Kernelization 57

Kernelization

• Preprocessing rules reduce starting instance
to one of size f(k)
– Should work in polynomial time

• Then use any algorithm to solve problem on
kernel

• Time will be p(n) + g(f(k))

Example problem
Point-Line-Cover

• Given: Set S of points
in the plane, integer k

• Parameter: k
• Question: are there k

straight lines that hit
all the points

FPT and Kernelization 58

k = 4

Example problem
Point-Line-Cover

• Given: Set S of points
in the plane, integer k

• Parameter: k
• Question: are there k

straight lines that hit
all the points?

FPT and Kernelization 59

k = 4

YES

Rule 1

• Observation: if we have a line that hits k+1
points, we have to take it
– Otherwise ...

• Rule 1: If we have a line that hits k+1 or more
points, then
– Remove the points hit by the line
– Set k = k – 1

FPT and Kernelization 60

Rule 2

• Observation: suppose no line hits more than
k points. If we have more than k2 points, we
need more than k lines

• Rule 2: If we cannot apply Rule 1, and we
have more than k2 points then say NO
– Formally: change instance to trivial NO-

instance

FPT and Kernelization 61

1

Kernel for Point-Line-Cover

Algorithm:
•While Rule 1 is possible, apply it
•If Rule 2 is possible, apply it

•Easy: polynomial time
•Trivial: afterwards, we have at most k2 points

FPT and Kernelization 62

FPT and Kernelization 63

Maximum Satisfiability

• Given: Boolean formula in
conjunctive normal form; integer k

• Parameter: k
• Question: Is there a truth

assignment that satisfies at least k
clauses?

• Denote: number of clauses: C

Skip
this
part

FPT and Kernelization 64

Reducing the number of
clauses

• If C ≥ 2k, then answer is YES
– Look at arbitrary truth assignment, and truth

assignment where we flip each value
– Each clause is satisfied in one of these two

assignment
– So, one assignment satisfies at least half of all

clauses

FPT and Kernelization 65

Bounding number of long
clauses

• Long clause: has at least k literals
• Short clause: has at most k-1 literals
• Let L be number of long clauses
• If L ≥ k: answer is YES

– Select in each long clause a literal, whose
complement is not yet selected

– Set these all to true
– All long clauses are satisfied

FPT and Kernelization 66

Reducing to only short
clauses

• If less than k long clauses
– Make new instance, with only the short clauses and k

set to k-L
– There is a truth assignment that satisfies at least k-L

short clauses, if and only if there is a truth assignment
that satisfies at least k clauses

• =>: choose for each satisfied short clause a variable that makes
the clause true. We may change all other variables, and can
choose for each long clause another variable that makes it true

• <=: trivial

FPT and Kernelization 67

An O(k2) kernel for
 Maximum Satisfiability

• If at least 2k clauses: return YES
• If at least k long clauses: return YES
• Else: remove all L long clauses, and set

k=k-L

FPT and Kernelization 68

Formal definition of
kernelisation

• Let P be a parameterized problem. (Each
input of the form (I,k).) A reduction to a
problem kernel is an algorithm, that
transforms A inputs of P to inputs of P, such
that
– P((I,k)), if and only if P(A(I,k)) for all (I,k)
– If A(I,k) = (I’,k’), then k’ ≤ f(k), and |I’| ≤ g(k)

for some functions f, g
– A uses time, polynomial in |I| and k

A theorem with a strange
proof

• Theorem (folklore): Let Q be a decidable
parameterized problem. The following are
equivalent:

1. Q belongs to FPT, i.e., has an algorithm
with time O(f(k)nc) for fixed c

2. Q has a (reduction to a problem) kernel

FPT and Kernelization 69

Proof part 1
• Suppose Q has a kernel. Then this is an FPT

algorithm:
– Given: instance x, parameter k
– Build the kernel y, k’ (has size f(k))
– Run any algorithm to decide on y, k’

• Running time is p(|x|) + g(f(k)) for polynomial
p and some function g
– p(|x|) for making kernel
– g(f(k)) for solving kernel

FPT and Kernelization 70

FPT and Kernelization 71

Proof part 2
• 
• If P is in FPT, P has a (perhaps trivial) reduction

to a problem kernel
– Given: instance x, parameter k
– Suppose we have an f(k) nc algorithm
– If |x| > f(k), solve problem exactly: this is O(nc+1) time

• Formality: take small yes or no-instance afterwards
– Otherwise, output x, k (i.e., do nothing)

• We have that |x| <= f(k) .

FPT and Kernelization 72

Implications of the theorem

• Positive:
– Technique to obtain FPT-algorithms:

• Make small kernel.
• Algorithm on resulting small instance.

• Negative:
– If we have evidence that there exists no FPT-

algorithm, we also have evidence that there
exists no kernel.

Another kernel example
• Convex colored marbles

– Real application in
computational biology

– Given: sequence of
colored marbles, integer
k

– Parameter: k
– Question: can we remove

at most k marbles such
that for each color, all
marbles with that color
are consecutive?

FPT and Kernelization 73

Solution with
k = 2

Algorithm scheme

• Some safe rules:
– Do not change answer to the problem
– Simplify the instance

• Apply the rules while possible
• Argument that resulting instance has

bounded size
• Plan: build rules that limit some aspect of

the input

FPT and Kernelization 74

Blocks

• A block is a maximum consecutive part of
similarly colored marbles

FPT and Kernelization 75

Good colors and bad colors

• A color is good, if there is only one block
with this color, otherwise it is bad

• A block is good, if its color is good

FPT and Kernelization 76

Good Good

Bad Bad

Reducing number of blocks
of bad colors

• Observation: each removal can reduce the
number of bad blocks by at most 4
– The removed marble
– The two neighboring blocks could become one

• Rule 1: If there are more than 4k blocks
with a bad color, say NO

FPT and Kernelization 77

Rule 2

• If we have two consecutive good blocks,
give them the same color

FPT and Kernelization 78

Counting

• We have at most 4k bad blocks, and each
good block is between bad blocks: at most
4k+1 good blocks, and at most 8k+1 blocks

• We need some way to bound the size of
blocks ...

FPT and Kernelization 79

Bounding the size of blocks

• Rule 3: If a block has more than k+1
marbles, change its size to k+1
– Why correct?

• Resulting algorithm:

– Apply rules while possible
• Kernel size: at most (8k+1)(k+1) marbles

FPT and Kernelization 80

Many small kernels exist

• Graph problems: Feedback vertex set,
vertex cover, many problems on planar
graphs, ...

• Logic: can we satisfy at least k clauses of a
Satisfiability instance in CNF, ...

• ...

FPT and Kernelization 81

FPT and Kernelization 82

Negative results
• Recall:
Theorem If W[1] = FPT, then the Exponential Time

Hypothesis is not valid.
Corollary A parameterized problem that is W[1]-

hard has no kernel, unless the ETH does not hold.

FPT and Kernelization 83

Many W[1]-hard problems

• Many problems are W[1]-hard, e.g.: Clique,
Independent Set, Dominating Set, …

• No kernels for these, unless W[1] = FPT and
hence the Exponential Time Hypothesis fails.

FPT and Kernelization 84

Problems with large kernels
• For many problems in FPT, we do not know small

kernels.
• Consider:

Long Path
– Given: Graph G=(V,E), integer k.
– Question: Does G have a simple path of length at least

k?
– Parameter: k.

• Is in FPT, but all known kernels have size
exponential in k…

FPT and Kernelization 85

Does Long Path have a kernel of
polynomial size? Maybe not…

• Suppose we have a polynomial kernel, say
with kc bits size.

k k’
Size bounded by kc

FPT and Kernelization 86

Long path continued

• Now, suppose we have a series of inputs to
long path, say all with the same parameter:
(G1,k), (G2,k), …, (Gr,k).

…

k k k

FPT and Kernelization 87

Take the disjoint union
• G1 ∪ G2 ∪ … ∪ Gr has a simple path of length k,

if and only if there exists a graph Gi that has a path
of length k.

…

k k k

…

k k

FPT and Kernelization 88

And now, apply the kernel to
the union

…

k k k

…

k k

k’ Size bounded by kc

FPT and Kernelization 89

What happened?

• We have many (say r = k2c) instances of
Long Path, and transform it to one instance
of size < kc.

• Intuition: this cannot be possible without
solving some of the instances, as we have
fewer bits left than we had instances to start
with…

• Theory (next) formalizes this idea.

FPT and Kernelization 90

(Or-)Compositionality

• A parameterized problem Q is
or-compositional, if there is an algorithm that
– Receives as input a series of inputs to Q, all with the

same parameter (I1,k), …, (Ir,k);
– Uses polynomial time;
– Outputs one input (I’,k’) to Q;
– k’ bounded by polynomial in k;
– (I’,k’) ∈ Q if and only if there exists at least one j with

(Ij,k) ∈ Q.

FPT and Kernelization 91

Or-composition

poly(t*n + k) time

Q
instance

Q
instances x1 k x2 k x.. k xt k

n

x* k*

poly(k)

FPT and Kernelization 92

Compositionality gives
lowerbounds for kernels

Theorem (B, Downey, Fellows, Hermelin +
Fortnow, Santhanam, 2008)
Let P be a parameterized problem that is
– Or-compositional, and
– “Unparameterized form” is NP-complete.

Then P has no polynomial kernel unless NP ⊆
coNP/poly.

• Variant for and-compositionality also exists, with
recent (2012) result by Drucker

FPT and Kernelization 93

• Input: t instances of Longest Path.

• Take disjoint union, output as (G’, k).

• G’ has a path of length k  some Gi has a path of
length k.

• Output parameter trivially bounded in poly(k).

,k ,k ,k ,k ,k

,k

Long Path does not admit a
polynomial kernel unless

NP⊆coNP/poly

Application to Long Path

Additional techniques (1)
• Polynomial parameter transformations (several

authors): transform an argument that problem X
does not have a polynomial kernel to an argument
that problem Y does not have a polynomial kernel.

• Chen et al. (2009): no kernels of size kc n1-ε

(unless NP ⊆ coNP/poly).
• Cross-compositions (B, Jansen, Kratsch, 2010):

(composition of instances of problem X into
instances of problem Y).
– Composition of 2n instances suffices.

FPT and Kernelization 94

Additional techniques (2)
• Dell and van Melkebeek (2010): extend

technique to precise lower bounds, e.g.:
Ω(k2) bits for kernel for Vertex Cover
(unless NP ⊆ coNP/poly).

• E.g.: Kratsch (2013, unpublished): there is no
kernel for Point-Line-Cover with O(k2-ε) points
unless NP ⊆ coNP/poly for ε>0.

• ...

FPT and Kernelization 95

FPT and Kernelization 96

Disjoint cycles
• Disjoint cycles

– Given: Graph G=(V,E), integer k.
– Question: Does G contain k vertex disjoint cycles?
– Parameter: k.

• NP-complete, FPT, but does it has a polynomial kernel??
• Resembles Feedback Vertex Set, but behaves differently!

– Feedback vertex set
• Given: Graph G, integer k.
• Question: Is there a set of k vertices W such that G-W has no cycle?
• Parameter: k.

– FVS has O(k2) kernel (Thomassé)

FPT and Kernelization 97

PPT-transformation
• A polynomial-parameter-time transformation (ppt-

transformation) P to Q is an algorithm
– which takes an instance (x,k) of P as input,
– uses time polynomial in |x| + k,
– outputs an instance (x’, k’) of Q with

• (x,k) ∈ P  (x’, k’) ∈ Q,
• k’ is polynomial in k.

Theorem: If P has a ppt-transformation to Q, Q is NP-
complete, P is in NP, and P has no polynomial kernel,
then Q has no polynomial kernel.

FPT and Kernelization 98

Proof
Theorem: If P has a ppt-transformation to Q, Q is NP-complete,

P is in NP, and P has no polynomial kernel, then Q has no
polynomial kernel.

Proof Suppose Q has a polynomial kernel. Build a polynomial
kernel for P as follows:
– Take input (x,k) for P.
– Transform (x,k) to input (y,l) for Q with ppt-transformation.
– Use kernel on (y,l): gives equivalent (y’,l’) for Q with polynomial

size bound on |y|.
– NP-completeness gives transformation from Q to P: apply it to

(y’,l’) gives equivalent (x’,k’) with |x’| polynomially bounded in
|y’|+l’, which is polynomially bounded in (x,k).

FPT and Kernelization 99

Intermediate problem:
 Disjoint Factors

• Disjoint Factors
– Given: Integer k, string s on alphabet {1, 2, … , k}.
– Question: Can we find disjoint substrings s1, s2, … , sk in s such

that si starts and ends with i?
– Parameter: k

• Disjoint Factors is NP-complete.
• Solvable with Dynamic Programming in 2k |s| time.
• Next: compositionality.

14324141324142312412

FPT and Kernelization 100

Disjoint Factors is
compositional: proof by example
• Number of instances r can be bounded by 2k otherwise we

can solve them all in polynomial time.
• Take log r new characters, and build new string, like

(example for r=4):
– b a s1 a s2 a b a s3 a s4 a b
– New characters “eat” all but one instance, in which we must then

find the other factors:

• b a s1 a s2 a b a s3 a s3 a b
Corollary: Disjoint Factors has no polynomial kernel unless

NP ⊆ coNP/poly.

FPT and Kernelization 101

PPT-transformation from
Disjoint Factors to Disjoint

Cycles
14324141324142312412

2 3 4 1

Disjoint Cycles does not admit
a polynomial kernel unless

NP⊆coNP/poly

FPT and Kernelization 102

Overview of problem
behavior

• O(1) size kernels: problems in P. Ex: Eulerian Graph
– NP-completeness (variable parameter)

• Polynomial kernels Shown with algorithm. Ex.: Vertex
Cover
– compositionality, ppt-transformations, cross-composition

• Kernels, but not polynomial sized. Shown (usually) with
FPT-algorithm. Ex: Long Path
– W[1]-hardness

• XP: No kernel, polynomial if parameter is bounded. Ex.:
Independent Set
– NP-completeness (fixed parameter)

• Bad. Example: Graph Coloring is NP-complete for 3
colors

6

Conclusions

FPT and Kernelization 104

Conclusions

• Fixed parameter tractability
– Tells how to distinguish between O(f(k)nc) and O(nf(k))
– Practical (and theoretical) algorithms

• Kernelization
– Analysis of preprocessing
– Relation with ftp

• Question to you:
– Do these notions have relevance to your work?

	An introduction to fixed parameter tractability and kernelization
	On the topic
	Schedule
	1
	Fixed Parameter Complexity
	Parameterized problem
	Examples of parameterized problems (1)
	Clique
	Examples of parameterized problems (2)
	Simple O(nk) algorithm
	Vertex cover
	Examples of parameterized problems (3)
	Idea for algorithm
	Vertex Cover in�O(2k (n+m)) time
	Three types of complexity
	Fixed parameter complexity theory
	Parameterized problems
	Fixed parameter tractable problems
	Hard problems
	Examples of hard problems
	So what is parameterized complexity about?
	FPT techniques
	Closest string
	Subproblems
	Branching step
	Example
	Time analysis
	Technique
	Color coding
	Problem on colored graphs
	DP
	A randomized variant
	From randomized to deterministic
	4
	Remember Cook/Levin theorem
	Classes
	Scheme
	Parameterized m-reduction
	A Complete Problem
	More complete problems for W[1]
	Hard problems
	Example reduction
	Formal problem
	Transform from Dominating Set
	Floor gadgets
	Selector paths
	Lemma and Theorem
	About these hardness proofs
	4
	Preprocessing
	Example 0
	Slide Number 54
	The area of Kernelization
	Kernelization
	Kernelization
	Example problem�Point-Line-Cover
	Example problem�Point-Line-Cover
	Rule 1
	Rule 2
	Kernel for Point-Line-Cover
	Maximum Satisfiability
	Reducing the number of clauses
	Bounding number of long clauses
	Reducing to only short clauses
	An O(k2) kernel for� Maximum Satisfiability
	Formal definition of kernelisation
	A theorem with a strange proof
	Proof part 1
	Proof part 2
	Implications of the theorem
	Another kernel example
	Algorithm scheme
	Blocks
	Good colors and bad colors
	Reducing number of blocks of bad colors
	Rule 2
	Counting
	Bounding the size of blocks
	Many small kernels exist
	Negative results
	Many W[1]-hard problems
	Problems with large kernels
	Does Long Path have a kernel of polynomial size? Maybe not…
	Long path continued
	Take the disjoint union
	And now, apply the kernel to the union
	What happened?
	(Or-)Compositionality
	Or-composition
	Compositionality gives lowerbounds for kernels
	Application to Long Path
	Additional techniques (1)
	Additional techniques (2)
	Disjoint cycles
	PPT-transformation
	Proof
	Intermediate problem:� Disjoint Factors
	Disjoint Factors is compositional: proof by example
	PPT-transformation from �Disjoint Factors to Disjoint Cycles
	Overview of problem behavior
	6
	Conclusions

