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On the topic 
• Fixed parameter tractability: recent direction in algorithm 

research 
• Kernelization: offspring – allows mathematical analysis of 

preprocessing for problems 
• This talk: informal introduction to central notions 

– Simple examples  
– Some definitions, proofs, algorithms 
– Not much “uncertainty” / ECSQARU problems discussed in this 

talk… 



Schedule 

1. Fixed parameter tractability 
2. Hardness 
3. Kernelization 
4. Kernel lower bounds 
5. Conclusions 
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Introduction 
Parameterized complexity: 

 What is it about 
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Fixed Parameter Complexity 
• Many problems have a parameter 
• Many applications have this parameter to be 

small 
– E.g.: facility location with small number of 

facilities (place k hospitals on a large map) 
– Structural parameter of input that is likely to be 

small 
• Sometimes, faster / better algorithms are 

possible  
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Parameterized problem 

• Problem with two argument input: 
– Given: Some information x, integer k, … 
– Parameter: k 
– Question: Q(x,k)? 

• Many examples ... 



FPT and Kernelization 7 

Examples of parameterized 
problems (1) 

Graph Coloring 
Given: Graph G, integer k 
Parameter: k 
Question: Is there a vertex coloring of G with k 

colors? (I.e., c: V → {1, 2, …, k} with for all 
{v,w}∈ E: c(v) ≠ c(w)?) 

• NP-complete, even when k=3. 
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Clique 

• Subset W of the vertices in a graph, such 
that each pair has an edge 
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Examples of parameterized 
problems (2) 

Clique 
Given: Graph G, integer k 
Parameter: k 
Question: Is there a clique in G of size at least k? 

• Solvable in O(nk) time with simple 
algorithm. Complicated algorithm gives 
O(n2k/3). Seems to require Ω(nf(k)) time… 



Simple O(nk) algorithm 

• More or less like this: 
– For each set S of k vertices in G: 

• If S is a clique, then return yes 
– (If none returned yes:) return no 

 
• ... hardly anything better known ... 
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Vertex cover 

• Set of vertices W ⊆ V with for all {x,y} ∈ 
E: x ∈ W or y ∈ W. 

• Vertex Cover problem: 
– Given G, find vertex cover of minimum size 
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Examples of parameterized 
problems (3) 

Vertex cover 
Given: Graph G, integer k 
Parameter: k 
Question: Is there a vertex cover of G of size at 

most k? 
• Solvable in O(2k (n+m)) time 



Idea for algorithm 

• Take an edge {v,w} 
• In each solution S, we 

have v or w (or both) 
• If we take v, then this 

is similar to looking at 
the graph obtained by 
removing v and all its 
edges 
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Vertex Cover in 
O(2k (n+m)) time  

• Recursive algorithm 
• VC(G, k) 

– If G has no edges: return yes 
– If k == 0: return no 
– Choose an edge e = {v,w} 
– Let G’ be obtained from G by removing v and all 

its edges 
– Let G” be obtained from G by removing w and all 

its edges 
– Return VC(G’,k-1) or VC(G’’,k-1) 
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Three types of complexity 

• When the parameter is fixed 
– Still NP-complete (k-coloring, take k=3) 
– O(f(k) nc) 
– O(nf(k)) 
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Fixed parameter complexity 
theory 

• To distinguish between behavior: 
O( f(k) * nc) 
Ω( nf(k)) 

• Proposed by Downey and Fellows. 
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Parameterized problems 

• Instances of the form (x,k) 
– I.e., we have a second parameter 

• Decision problem (subset of {0,1}* x N ) 
 

• Notation: k is the parameter, n measures 
size of x 
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Fixed parameter tractable 
problems 

• FPT is the class of problems with an 
algorithm that solves instances of the form 
(x,k) in time p(|x|)*f(k), for polynomial p 
and some function f. 
– E.g. O(3k n2), O(k! n), ... 
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Hard problems 

• Complexity classes 
– W[1] ⊆ W[2] ⊆ … W[i] ⊆ … W[P] 
– Defined in terms of Boolean circuits 
– Problems hard for W[1] or larger class are 

assumed not to be in FPT 
• Compare with P / NP 
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Examples of hard problems 
• Clique and Independent Set are W[1]-complete 
• Dominating Set is W[2]-complete 
• Version of Satisfiability is W[1]-complete 

– Given: set of clauses, k 
– Parameter: k 
– Question: can we set (at most) k variables to true, and 

al others to false, and make all clauses true? 
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So what is parameterized 
complexity about? 

• Given a parameterized problem 
• Establish that it is in FPT 

– And then design an algorithm that is as fast as possible 
• Or show that it is hard for W[1] or “higher” 

– Try to find a polynomial time algorithm for fixed 
parameter 

• Or even show that it is NP-complete for fixed 
parameters 
– Solve it with different techniques (exact or 

approximation) 
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FPT techniques 
• Several algorithmic techniques to show that 

problems are in FPT 
– Branching  
– Dynamic programming 

• Exploiting structures like tree decompositions (clique trees, 
junction trees); linear structure of problem instances ... 

– Advanced, specialized techniques: 
• Iterative improvement 
• Color coding 
• ... 
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Closest string 
– Given: k strings s1, …,sk each of length L, 

integer d 
– Parameter: d 
– Question: is there a string s with Hamming 

distance at most d to each of s1, …,sk  
• Application in molecular biology 
• Here: FPT algorithm 
• (Gramm and Niedermeier, 2002) 
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Subproblems 

• Subproblems have form 
– Candidate string s 
– Additional parameter r 
– We look for a solution to original problem, with 

additional condition: 
• Hamming distance at most r to s 

• Start with s = s1 and r=d (= original 
problem) 
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Branching step 

• Choose an sj with Hamming distance > d to s 
• If Hamming distance of si  to s is larger than d+r: 

NO 
• For all positions i where sj differs from s 

– Solve subproblem with 
•  s changed at position i to value sj (j) 
• r = r – 1  

• Note: we find a solution, if and only one of these 
subproblems has a solution 
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Example 

• Strings 01112, 02223, 01221,  d=3 
– First position in solution will be a 0 
– First subproblem (01112, 3) 
– Creates three subproblems 

• (02113, 2) 
• (01213, 2) 
• (01123, 2) 
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Time analysis 

• Recursion depth d 
• At each level, we branch at most at d + r ≤ 2d 

positions 
• So, number of recursive steps at most d2d+1 

• Each step can be done in polynomial time: O(kdL)  
• Total time is O(d2d+1 . kdL) 
• Speed up possible by more clever branching and 

by kernelisation 
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Technique 

• Try to find a branching rule that 
– Decreases the parameter 
– Splits in a bounded number of subcases 

• YES, if and only if YES in at least one subcase 
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Color coding 

• Interesting algorithmic technique to give 
fast FPT algorithms 

• As example:  
• Long Path 

– Given: Graph G=(V,E), integer k 
– Parameter: k 
– Question: is there a simple path in G with at 

least k vertices? 
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Problem on colored graphs 

• Given: graph G=(V,E), for each vertex v a color in 
{1,2, … , k} 

• Question: Is there a simple path in G with k 
vertices of different colors? 

– Note: vertices with the same colors may be adjacent. 
• Can be solved in O(2k (nm)) time using dynamic 

programming 
• Used as subroutine… 



FPT and Kernelization 31 

DP 

• Tabulate: 
– (S,v): S is a set of colors, v a vertex, such that 

there is a path using vertices with colors in S, 
and ending in v 

– Using Dynamic Programming, we can tabulate 
all such pairs, and thus decide if the requested 
path exists 
 

We skip 
this slide 
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A randomized variant 

• For each vertex v, guess a color in {1, 2, …, k} 
• Check if there is a path of length k with only 

vertices with different colors 
• Note: 

– If there is a path of length k, we find one with positive 
chance ( 2k /k!) 

– We can do this check in O(2k nm) time 
– Repeat the check many times to get good probability 

for finding the path 



From randomized to 
deterministic 

• Randomized algorithm: 
– Repeat many times: 

• Guess colors 
• Solve DP; if YES, then return YES 

– Return NO 
• Derandomization is possible with k-perfect 

family of hash functions (replacing 
guesses)... 
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Hardness proofs 
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Remember Cook/Levin 
theorem 

• NP-completeness helps to distinguish between 
decision problems for which we have a 
polynomial time algorithm, and those for which 
we expect no such algorithm exists 

• NP-hard; NP-completeness; reductions 
• Cook/Levin theorem: `first’ NP-complete 

problem; used to prove others to be NP-complete 
• Similar theory for parameterized problems by 

Downey and Fellows 
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Classes 
• FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ … ⊆ W[i] ⊆ 

… ⊆ W[P] 
• Theoretical reasons to believe that hierarchy is 

strict 
• Theorem: If FPT = W[1], then the Exponential 

Time Hypothesis does not hold 
• ETH (Impagliazzo et al., 1999): There is a δ 

such that 3-Satisfiability cannot be solved in 
O(2δn) time 



Scheme 

• Define a notion of reduction 
• From the notion of reduction, we get 

hardness and completeness 
• Generic hard/complete problems + 

reduction give new hard/complete problems 
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Parameterized m-reduction  
• Let L, L’ be parameterized problems. 
• A standard parameterized m-reduction transforms 

an input (I,k) of L to an input (f(I,k), g(k)) of L’ 
– L((I,k)) if and only if L’((f(I,k), g(k))  
– f uses time p(|I|)* h(k) for a polynomial p, and some 

function h 
• Note: time may be exponential or worse in k 
• Note: the parameter only depends on parameter, 

not on rest of the input 
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A Complete Problem 
• Classes W[1], … are defined in terms of circuits 

(definition skipped here) 
• Short Turing Machine Acceptance 

– Given: A non-deterministic Turing machine M, input x, 
integer k 

– Parameter: k 
– Question: Does M accept x in a computation with at 

most k steps? 
• Short Turing Machine Acceptance is W[1]-

complete (compare Cook) 
• Note: easily solvable in O(nk+c) time 
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More complete problems for 
W[1] 

• Weighted q-CNF Satisfiability 
– Given: Boolean formula in CNF, such that each 

clause has at most q literals, integer k 
– Parameter: k 
– Question: Can we satisfy the formula by 

making at most k literals true? 
• For each fixed q > 1, Weighted q-CNF 

Satisfiability is complete for W[1]. 
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Hard problems 

• Independent Set, Clique: W[1]-complete 
• Dominating Set: W[2]-complete 
• Longest Common Subsequence III: W[1]-

complete (complex reduction to Clique) 
– Given: set of k strings S1, …, Sk, integer m 
– Parameter: k, m 
– Question: is there a string S of length m that is a 

subsequence of each string Si, 1 ≤ i ≤ k? 



Example reduction 

• K people have to do n tasks. Each task costs 
1 hour. Some tasks have to be done before 
some other tasks, and there is a deadline D. 

• Can we finish all tasks before D? 
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Formal problem 

• Precedence constrained K-processor scheduling 
– Instance: set of tasks T, each taking 1 unit of time, 

partial order < on tasks, deadline D, number of people 
that can carry out tasks K 

– Parameter: K 
– Question: can we carry out the tasks by K people, such 

that 
• If task1 < task2, then task1 is carried out before task2 
• At most one task per time step per person 
• All tasks finished at most at time D 
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Transform from Dominating 
Set 

• Let G=(V,E), k be instance of DS 
• Write n = |V|, c = n2, D = knc + 2n. 
• Take the following tasks and precedences: 
• Floor: D tasks in “series”: 

 
1 2 3 … … … … D-2 D-1 D 
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Floor gadgets 

• For all j of the form j = n-1+ ac + bn (0 ≤ a 
< kn, 1 ≤ b ≤ n), take a task that must 
happen on time j (parallel to the jth floor 
vertex) 

1 2 … j-1 j j+1 … … D-1 D 
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Selector paths 

• We take k paths of length D-n+1 
• Each models a vertex from the dominating set 
• To some vertices on the path, we also take parallel 

vertices: 
– If {vi, vj} ∉ E, and i ≠ j, then place a vertex parallel to 

the n-1+ac+in-jth vertex for all a, 0 ≤ a < kn 

1 … … … … … … … … D-n-1 … 
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Lemma and Theorem 
• Lemma: we can schedule this set of tasks with 

deadline D and 2k processors, if and only if G has 
a dominating set of size at most k 

• Theorem: Precedence constrained k-processor 
scheduling is W[2]-hard 

• Note: size of instance must depend in polynomial 
way on size of G (and hence on k < |V|) 

• It is allowed to use transformations where new 
parameter is exponential in old parameter 
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About these hardness 
proofs 

• Fixed parameter proofs: method of showing 
that a problem probably has no FPT-
algorithms 

• Often complicated proof  
• But not always  
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Kernelisation 



Preprocessing 

• Useful technique for solving problems: 
– Preprocess: change instance x to equivalent but 

smaller instance y 
– Solve the problem on y obtaining solution s’ 
– Translate s’ back to a solution s for x 

• Used very frequently (e.g., CPLEX, sat-
solvers, etc. etc.) 
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Example 0 
• Graph coloring:  

– Given: Graph G, number of colors c 
– Question: can we vertex color G with at most c colors? 

• Heuristic preprocessing: remove vertices with at 
most c-1 neigbors, while they exist 

• Undoing preprocessing:  
– Suppose we have a coloring of the reduced graph 
– Add the removed vertices back in reverse order. When 

we add a vertex, it has at most c-1 neighbors, so we can 
color it now. 
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2 colors 
solve 

Add back Color available 

Add back 
Color available 

Done 



The area of Kernelization 

• Central question: what can we say about the 
size of a resulting instance? 
 

• What we cannot hope for: 
– An algorithm that always reduces the size of the 

input to a smaller equivalent one? 
– Why not ... ? 
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Kernelization 

• Preprocessing that is: 
– Safe: the answer to the question does not 

change 
– Guarantee on size of resulting input as function 

of a parameter 
– Fast (polynomial time) 

• We look at decision problems (answer yes 
or no) 
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Kernelization 

• Preprocessing rules reduce starting instance 
to one of size f(k) 
– Should work in polynomial time 

• Then use any algorithm to solve problem on 
kernel 

• Time will be p(n) + g(f(k)) 



Example problem 
Point-Line-Cover 

• Given: Set S of points 
in the plane, integer k 

• Parameter: k 
• Question: are there k 

straight lines that hit 
all the points 
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k = 4 

 



Example problem 
Point-Line-Cover 

• Given: Set S of points 
in the plane, integer k 

• Parameter: k 
• Question: are there k 

straight lines that hit 
all the points? 
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k = 4 

YES 

 



Rule 1 

• Observation: if we have a line that hits k+1 
points, we have to take it 
– Otherwise ... 

• Rule 1: If we have a line that hits k+1 or more 
points, then 
– Remove the points hit by the line 
– Set k = k – 1  
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Rule 2 

• Observation: suppose no line hits more than 
k points. If we have more than k2 points, we 
need more than k lines 

• Rule 2: If we cannot apply Rule 1, and we 
have more than k2 points then say NO 
– Formally: change instance to trivial NO-

instance 
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Kernel for Point-Line-Cover 

Algorithm: 
•While Rule 1 is possible, apply it 
•If Rule 2 is possible, apply it 
 

•Easy: polynomial time 
•Trivial: afterwards, we have at most k2 points 
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Maximum Satisfiability 

• Given: Boolean formula in 
conjunctive normal form; integer k 

• Parameter: k 
• Question: Is there a truth 

assignment that satisfies at least k 
clauses? 

• Denote: number of clauses: C 

Skip 
this 
part 
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Reducing the number of 
clauses 

• If C ≥ 2k, then answer is YES 
– Look at arbitrary truth assignment, and truth 

assignment where we flip each value 
– Each clause is satisfied in one of these two 

assignment 
– So, one assignment satisfies at least half of all 

clauses 
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Bounding number of long 
clauses 

• Long clause: has at least k literals 
• Short clause: has at most k-1 literals 
• Let L be number of long clauses 
• If L ≥ k: answer is YES 

– Select in each long clause a literal, whose 
complement is not yet selected 

– Set these all to true 
– All long clauses are satisfied  
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Reducing to only short 
clauses 

• If less than k long clauses 
– Make new instance, with only the short clauses and k 

set to k-L 
– There is a truth assignment that satisfies at least k-L 

short clauses, if and only if there is a truth assignment 
that satisfies at least k clauses 

• =>: choose for each satisfied short clause a variable that makes 
the clause true. We may change all other variables, and can 
choose for each long clause another variable that makes it true 

• <=: trivial 
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An O(k2) kernel for 
 Maximum Satisfiability 

• If at least 2k clauses: return YES 
• If at least k long clauses: return YES 
• Else: remove all L long clauses, and set 

k=k-L 
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Formal definition of 
kernelisation 

• Let P be a parameterized problem. (Each 
input of the form (I,k).) A reduction to a 
problem kernel is an algorithm, that 
transforms A inputs of P to inputs of P, such 
that 
– P((I,k)), if and only if P(A(I,k)) for all (I,k) 
– If A(I,k) = (I’,k’), then k’ ≤ f(k), and |I’| ≤ g(k) 

for some functions f, g 
– A uses time, polynomial in |I| and k 



A theorem with a strange 
proof 

• Theorem (folklore): Let Q be a decidable 
parameterized problem. The following are 
equivalent: 

1. Q belongs to FPT, i.e., has an algorithm 
with time O(f(k)nc) for fixed c 

2. Q has a (reduction to a problem) kernel 
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Proof part 1 
• Suppose Q has a kernel. Then this is an FPT 

algorithm: 
– Given: instance x, parameter k 
– Build the kernel y, k’ (has size f(k)) 
– Run any algorithm to decide on y, k’  

• Running time is p(|x|) + g(f(k)) for polynomial 
p and some function g 
– p(|x|) for making kernel  
– g(f(k)) for solving kernel 
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Proof part 2 
•   
• If P is in FPT, P has a (perhaps trivial) reduction 

to a problem kernel 
– Given: instance x, parameter k 
– Suppose we have an f(k) nc algorithm 
– If |x| > f(k), solve problem exactly: this is O(nc+1) time 

• Formality: take small yes or no-instance afterwards 
– Otherwise, output x, k  (i.e., do nothing) 

• We have that |x| <= f(k) . 
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Implications of the theorem 

• Positive: 
– Technique to obtain FPT-algorithms: 

• Make small kernel. 
• Algorithm on resulting small instance. 

• Negative: 
– If we have evidence that there exists no FPT-

algorithm, we also have evidence that there 
exists no kernel. 



Another kernel example 
• Convex colored marbles 

– Real application in 
computational biology 

– Given: sequence of 
colored marbles, integer 
k 

– Parameter: k 
– Question: can we remove 

at most k marbles such 
that for each color, all 
marbles with that color 
are consecutive? 
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Solution with  
k = 2 

 



Algorithm scheme 

• Some safe rules: 
– Do not change answer to the problem 
– Simplify the instance 

• Apply the rules while possible 
• Argument that resulting instance has 

bounded size 
• Plan: build rules that limit some aspect of 

the input 
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Blocks 

• A block is a maximum consecutive part of 
similarly colored marbles 
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Good colors and bad colors 

• A color is good, if there is only one block 
with this color, otherwise it is bad 

• A block is good, if its color is good 
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Good Good 

Bad Bad 



Reducing number of blocks 
of bad colors 

• Observation: each removal can reduce the 
number of bad blocks by at most 4 
– The removed marble  
– The two neighboring blocks could become one 

• Rule 1: If there are more than 4k blocks 
with a bad color, say NO 
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Rule 2 

• If we have two consecutive good blocks, 
give them the same color 
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Counting 

• We have at most 4k bad blocks, and each 
good block is between bad blocks: at most 
4k+1 good blocks, and at most 8k+1 blocks 

• We need some way to bound the size of 
blocks ... 
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Bounding the size of blocks 

• Rule 3: If a block has more than k+1 
marbles, change its size to k+1 
– Why correct? 

 
• Resulting algorithm: 

– Apply rules while possible 
• Kernel size: at most (8k+1)(k+1) marbles 
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Many small kernels exist 

• Graph problems: Feedback vertex set, 
vertex cover, many problems on planar 
graphs, ... 

• Logic: can we satisfy at least k clauses of a 
Satisfiability instance in CNF, ... 

• ... 
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Negative results 
• Recall: 
Theorem If W[1] = FPT, then the Exponential Time 

Hypothesis is not valid. 
Corollary A parameterized problem that is W[1]-

hard has no kernel, unless the ETH does not hold. 
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Many W[1]-hard problems 

• Many problems are W[1]-hard, e.g.: Clique, 
Independent Set, Dominating Set, … 

• No kernels for these, unless W[1] = FPT and 
hence the Exponential Time Hypothesis fails. 
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Problems with large kernels 
• For many problems in FPT, we do not know small 

kernels. 
• Consider: 

Long Path 
– Given: Graph G=(V,E), integer k. 
– Question: Does G have a simple path of length at least 

k? 
– Parameter: k. 

• Is in FPT, but all known kernels have size 
exponential in k… 
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Does Long Path have a kernel of 
polynomial size? Maybe not… 

• Suppose we have a polynomial kernel, say 
with kc bits size. 
 

k k’ 
Size bounded by kc 
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Long path continued 

• Now, suppose we have a series of inputs to 
long path, say all with the same parameter: 
(G1,k), (G2,k), …, (Gr,k).  

… 

k k k 
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Take the disjoint union 
• G1 ∪ G2 ∪ … ∪ Gr has a simple path of length k, 

if and only if there exists a graph Gi that has a path 
of length k. 

… 

k k k 

… 

k k 
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And now, apply the kernel to 
the union 

… 

k k k 

… 

k k 

k’ Size bounded by kc 
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What happened? 

• We have many (say r = k2c) instances of 
Long Path, and transform it to one instance 
of size < kc. 

• Intuition: this cannot be possible without 
solving some of the instances, as we have 
fewer bits left than we had instances to start 
with… 

• Theory (next) formalizes this idea. 
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(Or-)Compositionality 

• A parameterized problem Q is  
or-compositional, if there is an algorithm that 
– Receives as input a series of inputs to Q, all with the 

same parameter (I1,k), …, (Ir,k); 
– Uses polynomial time; 
– Outputs one input (I’,k’) to Q; 
– k’ bounded by polynomial in k; 
– (I’,k’) ∈ Q if and only if there exists at least one j with 

(Ij,k) ∈ Q. 
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Or-composition 

 
 

poly(t*n + k) time 

Q 
instance 

Q 
instances x1 k x2 k x.. k xt k 

n 

x* k* 

poly(k) 
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Compositionality gives 
lowerbounds for kernels 

Theorem (B, Downey, Fellows, Hermelin + 
Fortnow, Santhanam, 2008)  
Let P be a parameterized problem that is 
– Or-compositional, and 
– “Unparameterized form” is NP-complete. 

Then P has no polynomial kernel unless NP ⊆ 
coNP/poly. 
 

• Variant for and-compositionality also exists, with 
recent (2012) result by Drucker 
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• Input: t instances of Longest Path. 
 
 

• Take disjoint union, output as (G’, k). 
 
 

• G’ has a path of length k  some Gi has a path of 
length k. 

• Output parameter trivially bounded in poly(k). 

,k ,k ,k ,k ,k 

,k 

Long Path does not admit a 
polynomial kernel unless 

NP⊆coNP/poly 

Application to Long Path 



Additional techniques (1) 
• Polynomial parameter transformations (several 

authors): transform an argument that problem X 
does not have a polynomial kernel to an argument 
that problem Y does not have a polynomial kernel. 

• Chen et al. (2009): no kernels of size kc n1-ε 

(unless NP ⊆ coNP/poly). 
• Cross-compositions (B, Jansen, Kratsch, 2010): 

(composition of instances of problem X into 
instances of problem Y). 
– Composition of 2n instances suffices. 
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Additional techniques (2) 
• Dell and van Melkebeek (2010): extend 

technique to precise lower bounds, e.g.: 
Ω(k2) bits for kernel for Vertex Cover 
(unless NP ⊆ coNP/poly). 

• E.g.: Kratsch (2013, unpublished): there is no 
kernel for Point-Line-Cover with O(k2-ε) points 
unless NP ⊆ coNP/poly for ε>0. 

• ... 
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Disjoint cycles 
• Disjoint cycles 

– Given: Graph G=(V,E), integer k. 
– Question: Does G contain k vertex disjoint cycles? 
– Parameter: k. 

• NP-complete, FPT, but does it has a polynomial kernel?? 
• Resembles Feedback Vertex Set, but behaves differently! 

– Feedback vertex set 
• Given: Graph G, integer k. 
• Question: Is there a set of k vertices W such that G-W has no cycle? 
• Parameter: k. 

– FVS has O(k2) kernel (Thomassé)  
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PPT-transformation 
• A polynomial-parameter-time transformation (ppt-

transformation) P to Q is an algorithm 
– which takes an instance (x,k) of P as input, 
– uses time polynomial in |x| + k, 
– outputs an instance (x’, k’) of Q with 

• (x,k) ∈ P  (x’, k’) ∈ Q, 
• k’ is polynomial in k. 

Theorem: If P has a ppt-transformation to Q, Q is NP-
complete, P is in NP, and P has no polynomial kernel, 
then Q has no polynomial kernel. 
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Proof 
Theorem: If P has a ppt-transformation to Q, Q is NP-complete, 

P is in NP, and P has no polynomial kernel, then Q has no 
polynomial kernel. 

Proof Suppose Q has a polynomial kernel. Build a polynomial 
kernel for P as follows: 
– Take input (x,k) for P. 
– Transform (x,k) to input (y,l) for Q with ppt-transformation. 
– Use kernel on (y,l): gives equivalent (y’,l’) for Q with polynomial 

size bound on |y|. 
– NP-completeness gives transformation from Q to P: apply it to 

(y’,l’) gives equivalent (x’,k’) with |x’| polynomially bounded in 
|y’|+l’, which is polynomially bounded in (x,k).  
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Intermediate problem: 
 Disjoint Factors 

• Disjoint Factors 
– Given: Integer k, string s on alphabet {1, 2, … , k}. 
– Question: Can we find disjoint substrings s1, s2, … , sk in s such 

that si starts and ends with i? 
– Parameter: k 

• Disjoint Factors is NP-complete. 
• Solvable with Dynamic Programming in 2k |s| time. 
• Next: compositionality. 

14324141324142312412 
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Disjoint Factors is 
compositional: proof by example 
• Number of instances r can be bounded by 2k otherwise we 

can solve them all in polynomial time. 
• Take log r new characters, and build new string, like 

(example for r=4): 
– b a s1 a s2 a b a s3 a s4 a b 
– New characters “eat” all but one instance, in which we must then 

find the other factors: 

• b a s1 a s2 a b a s3 a s3 a b 
Corollary: Disjoint Factors has no polynomial kernel unless 

NP ⊆ coNP/poly. 



FPT and Kernelization 101 

PPT-transformation from  
Disjoint Factors to Disjoint 

Cycles 
14324141324142312412 

2 3 4 1 

Disjoint Cycles does not admit 
a polynomial kernel unless 

NP⊆coNP/poly 
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Overview of problem 
behavior 

• O(1) size kernels: problems in P. Ex: Eulerian Graph 
– NP-completeness (variable parameter)  

• Polynomial kernels Shown with algorithm. Ex.: Vertex 
Cover 
– compositionality, ppt-transformations, cross-composition 

• Kernels, but not polynomial sized. Shown (usually) with 
FPT-algorithm. Ex: Long Path 
– W[1]-hardness 

• XP: No kernel, polynomial if parameter is bounded. Ex.: 
Independent Set 
– NP-completeness (fixed parameter) 

• Bad. Example: Graph Coloring is NP-complete for 3 
colors 



6 

Conclusions 
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Conclusions 

• Fixed parameter tractability 
– Tells how to distinguish between O(f(k)nc) and O(nf(k)) 
– Practical (and theoretical) algorithms 

• Kernelization 
– Analysis of preprocessing 
– Relation with ftp 

• Question to you: 
– Do these notions have relevance to your work? 
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