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What this Tutorial is not About

not heap + 1 grain, heap?

heap

The sorites paradox from
the Greek for ‘heap’.

Attributed to Eubulides of
Miletus (4th century
BCE).

With many variations
sorites susceptibility is
often taken as a defining
feature of vague
predicates.



Is Vagueness Useful for Intelligent Systems?

it seems rather far fetched to conclude that we have
simply tolerated a worldwide, several thousand year
efficiency loss. [Barton Lipman]

Vagueness pervades natural language yet it is frowned upon in
the western scientific tradition.

In science clarity and (semantic) precision are seen as being a
fundamental prerequisite to progress.

A hypothesis must be clearly formulated before it can be
properly empirically tested.

So why is vagueness so common in almost all aspects of
language?

So is it actually useful and if so how and why?



Some Possible Uses of Vagueness

Kees Van Deemter (2009) has proposed a number of possible
tasks in which vagueness may be useful, including 1 and 2:

1 Future Contingencies: Vagueness can mitigate the risk
associated with making forecasts or promises.

2 Search: Order information about typicality is embedded in
vague predicates. This has the potential to reduce search
times.

3 Consensus: Vagueness enables agents to reach consensus
while maintaining internal consistency.

4 Language Learning: The meaning of concepts emerge through
a distributed process of interactions between agents leading to
semantic uncertainty.

5 Flexibility: Small numbers of decision rules which can fire to
an intermediate degree. Constraints and specifications which
can naturally be relaxed or tightened.



What is Vagueness?

Today, vague predicates are standardly characterized by
three main ‘symptoms’, namely as predicates that are
sorities susceptible, that have borderline cases, and that
have blurry boundaries. (Paul Égré)

Vagueness is a multifaceted phenomena and the different
possible uses we have outlined exploit different aspects of
vagueness.

Indeterminism: Borderline cases may facilitate consensus as
well as mitigating the risk of making promises or forecasts.

Semantic Uncertainty: Explicit representation of uncertain
about predicate definitions can aid learning and decision
making.

Typicality: Prototype based conceptual models may allow
agents to effectively order candidate solutions during search.



Truth-gaps and Indeterminism

Propositions can be absolutely true or absolutely false but
there may be also be a truth-gap.

Some propositions may be neither absolutely true nor
absolutely false i.e. indeterminate or borderline

For example, consider the proposition p =‘Ethel is short’.

In this context short could be defined by two height thresholds
h ≤ h.

Let Ethel’s height be h. Then p is absolutely true if h ≤ h,
absolutely false of h > h and borderline otherwise.



A Propositional Model of Indeterminism

L is a language with propositional variables P = {p1, . . . , pn},
connectives ¬,∧,∨ and sentences SL.

Definition

A valuation pair is a pair of binary functions ~v = (v , v) where
v : SL → {0, 1}, v : SL → {0, 1} and v ≤ v.
For sentence θ ∈ SL, v(θ) = 1 means that θ is absolutely true,
and v(θ) = 1 means that θ is not absolutely false.

We can also think of a valuation pair as a three-valued
mapping with ~v(θ) having possible values t = (1, 1),
b = (0, 1) and f = (0, 0).

There are a number of ways of defining valuation pairs...



Two Types of Valuation Pairs

Definition

A Kleene valuation pair is valuation pair (v , v) satisfying:
∀θ, ϕ ∈ SL

1 v(¬θ) = 1 − v(θ), v(¬θ) = 1 − v(θ)

2 v(θ ∧ ϕ) = min(v(θ), v(ϕ)) and v(θ ∧ ϕ) = min(v(θ), v(ϕ))

3 v(θ ∨ ϕ) = max(v(θ), v(ϕ)) and v(θ ∨ ϕ) = max(v(θ), v(ϕ))

Let Vc denote the set of classical valuations on L.

Definition

A supervaluation [Fine] pair is defined as follows: For Π ⊆ Vc let
∀θ ∈ SL;

v(θ) = min{v(θ) : v ∈ Π} and v(θ) = max{v(θ) : v ∈ Π}

Let Vk and Vs denote the sets of Kleene and supervaluation
pairs on L, respectively.



Orthopairs and Kleene Valuations

Kleene valuation pairs can be characterised by a pair of sets of
propositional variables (P, N) where P = {pi : v(pi ) = 1} and
N = {pi : v(¬pi ) = 1}

Notice that since v ≤ v then
v(pi ) = 1 ⇒ v(pi ) = 1 ⇒ v(¬pi ) = 0.

Hence, P ∩ N = ∅ i.e (P, N) is an orthopair.

Example: Let P = {p1, p2, p3, p4} and ~v = ({p1}, {p4}) then
~v(p1) = t, ~v(p4) = f, ~v(p2) = ~v(p3) = b.

If pi ∈ (P ∪ N)c then ~v(pi ) = b

Hence, |(P ∪ N)c | quantifies the vagueness of a particular
valuation pair.

(P1, N1) and (P2, N2) are consistent if P1 ∩N2 = P2 ∩N1 = ∅.



Semantic Precision: An Ordering on Precisification

We now define semantic precision as a natural partial ordering
on valuation pairs.

Definition

Given two valuation pairs ~v1 and ~v2, ~v1 � ~v2 if and only if
∀θ ∈ SL, v1(θ) ≤ v2(θ) and v1(θ) ≥ v2(θ).

~v1 is less semantically precise than ~v2 if they disagree only for
some set of sentences of L, which being identified as either t

or f by ~v2, are classified as being b by ~v1.

Theorem

For ~v1, ~v2 ∈ Vk , ~v1 � ~v2 iff P1 ⊆ P2 and N1 ⊆ N2.

For ~v1, ~v2 ∈ Vs , ~v1 � ~v2 iff Π1 ⊇ Π2.



Relating Kleene and Supervaluation Pairs

Consider the language L with P = {p1, p2}
Let v0, v1, v2, v3 ∈ Vc such that v0(¬p1 ∧ ¬p2) = 1,
v1(p1 ∧ ¬p2) = 1, v2(¬p1 ∧ p2) = 1, v3(p1 ∧ p2) = 1

({p1}, {p2})

({p1}, ∅) (∅, {p2})

(∅, ∅)

Π

{v1, v2} : ~v(p1 ∧ p2) = f, ~v(p1 ∧ ¬p2) = b,

~v(¬p1 ∧ p2) = b, ~v(¬p1 ∧ ¬p2) = f

{v0, v3} : ~v(p1 ∧ p2) = b, ~v(p1 ∧ ¬p2) = f,

~v(¬p1 ∧ p2) = f, ~v(¬p1 ∧ ¬p2) = b

{v1, v2, v0}
{v1, v2, v3}
{v0, v3, v1}

{v0, v3, v2}

{v0, v1, v2, v3} : ~v(p1 ∧ p2) = b,

~v(p1 ∧ ¬p2) = b, ~v(¬p1 ∧ p2) = b,

~v(¬p1 ∧ ¬p2) = b



Penumbral Connections

Penumbral connections are defined to be those ‘logical
relations [that] hold between indefinite sentences’ [Fine].

Given a sequence of heights h1 < h2 < . . . < hn where only h1

is absolutely not tall, and only hn is absolutely tall, so that all
other heights are borderline cases of tall.

But if we learn that hi is tall for any i ∈ {2, . . . , n − 1} we
immediately infer that hi+1 is tall, because hi+1 > hi .

Let vi ∈ Vc be such that vi (
∧i−1

j=1 ¬pi ∧
∧n

j=i pi ) = 1 then
take Π = {v2, . . . , vn}.



Uncertainty and Vagueness

Consider a combined model incorporating both indeterminism
and epistemic uncertainty.

In this context natural division of uncertainty types is:

Semantic Uncertainty: This takes the form of uncertainty
about what is the correct interpretation of L. For example, an
agent may be uncertain as to whether or not a proposition
such as ‘Ethel is short’ is absolutely true or absolutely false
even if they know Ethel’s height precisely.

Possible Worlds Uncertainty: This type of uncertainty arises
from a lack of knowledge concerning the state of the world
and in particular about the referents of sentences in L. For
example, an agent may not know Ethel’s height precisely and
hence be uncertain about the truth value of the proposition
‘Ethel is short’.



Semantic Uncertainty and the Epistemic Stance

Usually it is uses of words, not words in themselves, that
are properly called vague. [J. L. Austin]

Recall the proposition ‘Ethel is short’ where short is defined in
terms of lower and upper threshold values h ≤ h.

Here semantic uncertainty could take the form of a probability
density function on {(h, h) ∈ R

2 : 0 ≤ h ≤ h}

Agents need to decide on assertions and update the
conceptual models based their previous experience of
communications with other agents.

The Epistemic Stance [Lawry]: Individuals, when faced with
such issues, find it useful as part of a pragmatic decision
making and learning strategy to assume that there is a correct
interpretation of L.

This a weaker form of the epistemic theory of vagueness.
[Williamson].



Belief Pairs

In our current model epistemic uncertainty takes the form of
uncertainty as to which is the correct valuation pair.

Let V be a finite set (a certain class) of valuation pairs on L.

Let w : V → [0, 1] be a probability measure on V representing
an agent’s subjective belief.

This naturally generates lower and upper measures as follows:

µ(θ) = w({~v ∈ V : v(θ) = 1}) = w({~v ∈ V : ~v(θ) = t}) i.e.
the agent’s subjective probability that θ is absolutely true.

µ(θ) = w({~v ∈ V : v(θ) = 1}) = w({~v ∈ V : ~v(θ) 6= f}) i.e.
the agent’s subjective probability that θ is not absolutely false.

If V ⊆ Vs then (µ, µ) are Dempster-Shafer belief and
plausibility measures on SL.

If V ⊆ Vk then (µ, µ) are Kleene belief pairs with some
relationship to fuzzy and interval fuzzy truth degrees.



The Cautious Politician

I pledge to vote against any increase
in fees in the next parliament and to
pressure the government to introduce
a fairer alternative.

Consider a politician who is considering making a pledge at an
upcoming general election.

Vague Pledge: A significant reduction in the budget deficit,
with only a minor increase in unemployment.

Crisp Pledge: At least a 40% reduction in the budget deficit,
with no more than a 2% increase in unemployment.

Vague assertion: Lower initial reward but lower risk of failing
to meet the pledge.

Crisp assertion: Higher initial reward but higher risk of failing
to meet the pledge.

Can we develop a utility model for choosing between these
assertions?



A Simple Utility Model

Suppose that the agent must choose between a vague
assertion θ and a crisp assertion ϕ.

We assume µ(ϕ) = µ(ϕ) = µ(ϕ) and µ(θ) ≤ µ(ϕ) ≤ µ(θ).

Let x1, x2 ∈ R
+ be the (initial) rewards for asserting θ and ϕ

respectively. (Simplify x1 = x2 = x)

y ∈ R
+ the reward for making an absolutely true assertion

(the same for θ and ϕ).

−z for z ∈ R
+ is the cost of making an assertion which is

absolutely false.

Assume borderline assertions are neutral with 0 reward or cost.

E (Uθ) = x − z + µ(θ)y + µ(θ)z ,
E (Uϕ) = x − z + µ(ϕ)(y + z).

E (Uθ) ≥ E (Uϕ) iff α ≤ µ(θ)−µ(ϕ)
µ(ϕ)−µ(θ) where α = y

z
.



Interpretation of Utility Model

Some people are always critical of vague statements. I
tend rather to be critical of precise statements; they are
the only ones which can correctly be labeled
’wrong’.[Raymond Smullyan]

We have an upper bound on the ratio of reward over cost for
which E (Uθ) ≥ E (Uϕ).

The higher the cost of making an absolutely false assertion
relative to the reward of making an absolutely true one, the
more likely it is that the agent is better off making a vague
rather than a crisp assertion.

If µ(ϕ) ≤
µ(θ)+µ(θ)

2 then E (Uθ) ≥ E (Uϕ) for all α ∈ [0, 1] i.e.
for y ≤ z .

A special case of this is when µ(ϕ) ≤ 0.5 and µ(θ) = 0 and
µ(θ) = 1 i.e. the agent is certain that θ is borderline.



Emergent Consensus

In many decision making and negotiation scenarios intelligent
agents need to reach a common shared position or viewpoint
about some set of propositions.

One route to such a consensus is for each agent to adopt a
more vague interpretation of underlying predicates so as to
soften directly conflicting opinions.

Truth-gaps enable agents to reach consensus by weakening
their viewpoints while maintaining internal consistency.



Consensus by Weakening

If you can’t be kind, at least be vague. [Judith Martin]

Suppose two agents a1 and a2 need to reach agreement about
the proposition p =‘UK inflation is currently low’.

f =the actual level of UK inflation

Agent ai defines low in terms of lower and upper threshold
f i ≤ f i .



A Natural Consensus Operator

We use the orthopair notation to define a consensus
combination operator in the Kleene valuation pair framework.

Definition

Given valuation pairs ~v1 and ~v2 with orthopairs (P1, N1) and
(P2, N2) then ~v1 ⊙ ~v2 is defined by the orthopair
((P1 − N2) ∪ (P2 − N1), (N1 − P2) ∪ (N2 − P1)).

For literals we have that:

v1 ⊙ v2(l) = max(min(v1(l), v2(l)), min(v2(l), v1(l)))

v1 ⊙ v2(l) = min(max(v1(l), v2(l)), max(v2(l), v1(l)))

⊙ t b f

t t t b

b t b f

f b f f



A Multi-Agent Simulation Study on Consensus

Language size n propositional variables, k agents.

Some useful metrics are:

Inconsistency: I (~v1, ~v2) = |P1∩N2|+|P2∩N1|
n

Vagueness: V (~v) = |(P∪N)c |
n

We now set a consistency threshold γ ∈ [0, 1] on belief
combination, so that valuations ~v1 and ~v2 can only be
combined using ⊙ if I (~v1, ~v2) ≤ γ.

At each discrete time-step two agents characterised by ~v1 and
~v2 are selected at random from the population.

If I (~v1, ~v2) ≤ γ then both ~v1 and ~v2 are replaced by ~v1 ⊙ ~v2,
and otherwise are left unchanged.

Each experiment (i.e. specific combination of parameter
values) was run 100 times and results shown are averages
across these runs.



Distinct Valuations at Steady-State

As the inconsistency threshold tends to one the number of
distinct valuations (or viewpoints) also tends to one.



Vagueness at Steady-State

As the inconsistency threshold tends to one then the
vagueness level tends to zero.
Intermediate inconsistency threshold levels result in a number
of distinct vague viewpoints at steady state.



Uncertainty, Precisification, Possibility and Fuzziness

Suppose an agent is only uncertain about the correct level of
semantic precision for interpretation of L.

Formally; suppose w is non-zero only on a sequence
~v1 � ~v2 � . . . � ~vk

If ~vi ∈ Vs then µ and µ are partially compositional necessity
and possibility measures on SL respectively.

If If ~vi ∈ Vk then µ and µ are fully compositional lower and
upper fuzzy truth-degrees satisfying [Lawry, Gonzalez]:
∀θ, ϕ ∈ SL

µ(¬θ) = 1 − µ(θ), µ(¬θ) = 1 − µ(θ)

µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ)), µ(θ ∧ ϕ) = min(µ(θ), µ(ϕ))

µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ)), µ(θ ∨ ϕ) = max(µ(θ), µ(ϕ))



Vague Predicates, Typicality and Blurry Boundaries

Consider a language L = {L1, . . . , Ln} with connectives
∧,∨,¬ and single variable x ; Li are unary predicates (labels)
for describing elements of an underlying metric space (Ω, d).
Let FL denote the formula of L obtained by recursively
applying the connectives to Li (x) : i = 1, . . . , n.
Li = (Pi , ǫi , δi ); Pi ⊆ Ω is a set of prototypes for Li , ǫi is a
positive real-valued random variable and ǫi ∼ δi [Lawry, Tang].
For x ∈ Ω, Li (x) is true provided x is sufficiently close to Pi

i.e. d(x , Pi ) ≤ ǫi

Pi ǫi

Ω

t

f



Random Set Neighbourhoods

Predicate Li is characterised by the following consonant
random set:

N ǫi

Li
= {x ∈ Ω : d(x , Pi ) ≤ ǫi}

So that: Li (x) is true if and only if x ∈ N ǫi

Li

Then neighbourhoods for formula in FL can be defined
recursively according to the rules: For θ, ϕ ∈ FL;

N~ǫ
¬θ = (N~ǫ

θ )c , N~ǫ
θ∧ϕ = N~ǫ

θ ∩N~ǫ
ϕ, N~ǫ

θ∨ϕ = N~ǫ
θ ∪N~ǫ

ϕ

Note that ~ǫ = (ǫ1, . . . , ǫi ) appears above because the
neighbourhood for a general formula θ may be defined in
terms of any or all of these n thresholds.

E.g. for θ =
∧n

i=1 Li ,

N~ǫ
θ = {x ∈ Ω : d(x , Pi ) ≤ ǫi , i = 1, . . . , n}



Probability, Similarity and Membership Functions

Given this framework we should also take account of the
semantic uncertainty concerning the threshold parameters
ǫi : i = 1, . . . , n.

For a given x ∈ Ω we can determine the probability that Li (x)
is true, according to:

µLi
(x) = δi ({ǫi : ǫi ≥ d(x , Pi )}) = ∆i (d(x , Pi ))

where ∆i (t) = δi ({ǫi : ǫi ≥ t})

µLi
: Ω → [0, 1] is a membership function (single point

coverage) of the random set defining Li in Ω.

We can also think in terms of similarity to prototypes.

Si (x , y) = ∆i (d(x , y)) is a similarity measure and
µLi

(x) = Si (x , Pi )



Membership for Compound Formula

For a compound formula θ ∈ FL calculating the probability
that x ∈ N~ǫ

θ in general requires a joint distribution on
(ǫ1, . . . , ǫn).

Here we consider just two special cases:

Total Independence: All thresholds are independent of all
other thresholds. Appropriate when the different predicates
relate to different independent characteristics of the elements
in Ω e.g. tall and rich. In this case:

µLi∧Lj
(x) = µLi

(x) × µLj
(x)

Total Dependence: All thresholds are rescalings of a shared
underlying threshold. ǫi = fi (ǫ) : i = 1, . . . , n where fi is an
increasing function. Appropriate when predicates all refer to
strongly related features or characteristics e.g. colour, taste
etc. In this case:

µLi∧Lj
(x) = min(µLi

(x), µLj
(x))



Example: Colour Categories

Let Ω = [0, 1]3 (normalised rgb space) with metric
d(x , y) = ‖x − y‖.

Predicates are green = ((0, 1, 0), ǫ, δ) and
blue = ((0, 0, 1), ǫ, δ)

We consider two cases: 1) δ is the uniform distribution on
[0, 0.9] and 2) δ is a normalised Gaussian with mode 0 and
σ = 0.55.
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A Predicate Model Incorporating Truth-Gaps

So far our underlying truth-model for vague predicates has
been Boolean.

The approach can naturally be extended to incorporate
explicit borderlines.

Take Li = (Pi , ǫi , ǫi , δi ) where ǫi ≤ ǫi and (ǫi , ǫi ) ∼ δi

Pi ǫi

ǫi

t

b

f
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Li
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Language Games and Category Evolution

Luc Steels (1995) has argued that to be more realistic
language models must take into account the evolutionary
nature of language learning.

Language games model language learning through pairwise
interactions between agents.

S : w L

x ∈ Ω

Assert θ(x)

Update?

Yes if µθ(x) < w
No otherwise



Updating Conceptual Models

Pi

P ′
i = Pi + λ(x − Pi )

x

ǫi

ǫ
′

i = αǫi

Pi

ǫi

ǫ
′

i = αǫi

x

P ′
i = Pi − λ(x − Pi )

Assert Li (x): λ ∈ [0, 1], α ≥ 1

Assert ¬Li (x): λ ∈ [0, 1], α ≤ 1



Measuring Communication Success
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x ∈ Ω
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Flexible Specifications

There is a growing need to formally verify the design of
autonomous systems against a predefined specification.

Example: All trajectories must not pass close to either O1 nor
O2 and must terminate close to T.

O1

Ω

O2

T

x [t]

x
′[t]

This specification can be systematically weakened by
admitting borderline cases.



Conclusions: Enriched Conceptual Models

Man, unlike anything organic or inorganic in the universe,
grows beyond his work, walks up the stairs of his
concepts, emerges ahead of his accomplishments. [John
Steinbeck]

Vagueness is a multi-faceted phenomenon with different
aspects useful in different contexts.

In all cases we are really referring to enriched conceptual
models.

Boolean representations of concepts are flat!

All the examples we have considered exploit additional
structure in predicate definitions.

But there is usually a computational cost.

Vagueness 6⇒ cheap back of an envelope calculation!


