Applying Inverse Modeling for Field Work Planning

Alex Robinson Jason Geck Leanne Wake

Glaciers Online

Inverse modeling

- Determining values of some modeled parameter from observed data
 - Example: Obtaining information about temperature from known sea level

Global sea level
$$\rightarrow$$
 (Ice Sheet Model) \rightarrow Temperature

• Our example: bedrock geometry under glaciers from observed surface measurements

How can inverse modeling be used to plan field data collection campaigns?

- Why care?
 - Field work/equipment costs
- What is an acceptable observation error?
- What types of data need to be collected?
 - Surface Topography
 - Horizontal Velocity
- What is optimum sampling rate?

What do we know (A priori)?

*Bedrock topography map (DEM)

Aim of the survey: improve our estimate of the bedrock topography using surface topography oberservations

Point of our inverse study: aid the field planning method

- sampling resolution
- max allowed observation error (cost reduction)
- ... figure out what inverse modeling is...

- Goal: To get a better estimate of bedrock topography and idea of slipperiness...
 - Assuming we know surface topography, how well must we know horizontal surface velocity?
 - Assuming we know horizontal surface velocity, how well must we know surface topography?

**How are the errors related to sampling resolution?

* Horizontal velocity error 0.5%; Varying surface topography error

Bedrock slipperiness

* Surface topography error 0.5%; Varying horizontal velocity error

Effect of sampling resolution

Best estimate

0.5% error; n = 128

Less ideal cases...

0.5% error; n = 64

2% error; n = 128

1.5

Sensitivity of estimates

- **bb** : sensitivity of b to actual known bedrock
- **bc** : sensitivity of bedrock retrieval to known c

• **cc** : sensitivity of c to known

• **cb** : sensitivity of slipperiness to known bedrock

- Increasing resolution of observations improves estimate of bedrock topography, although is not as helpful with estimate of slipperiness
- Independent of resolution, reducing error in all observations is critical for resolving the bedrock
- Horizontal velocity is useful for resolving the slipperiness of the bed, but less important for resolving the bedrock topography
- Inverse modeling proves to be a useful tool for pre-planning of fieldwork

Thanks!

Karthaus, 2008:

Saving glaciers for the next generation

* Surface topography error 0.5%; Varying horizontal velocity error