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1. Introduction

We will study geometric structures coupled with group-like structures (Lie grou-
poids), and their role in Poisson geometry; focu on the interplay with infinitesimal
geometry and their symmetries.

Multiplicative structures will lead us to several objets of interest in Poisson ge-
ometry, including Lie (bi)algebroids, Courant brackets/Courant algebroids, Dirac
structures, moment maps...

We will somewhat follow the historical evolution: Poisson-Lie groups, symplectic
groupoids, Poisson groupoids (contact, Jacobi groupoids); Multiplicative multivector
fields, multiplicative forms (relation with Dirac structures); Motivation and appli-
cations include integrable systems, quantization, symmetries and moment maps (in-
cluding G-valued), equivariant cohomology, Cartan’s work... So there will be many
connections with other minicourses.

The plan is to proceed as follows.

2. First examples of multiplicative structures

2.1. Poisson-Lie groups. Definition of multiplicative Poisson structures on Lie
groups G (Poisson Lie groups): the multiplication map m : G×G→ G is a Poisson
map.

Basic properties, first examples (r-matrices).

2.2. Lie groupoids. We will need to consider more than just groups. Lie groupoids
naturally appear in symplectic/Poisson geometry, as we will see.

A Lie groupoid is a pair of smooth manifold (G,M) equipped with the following
structure maps:

(1) surjective submersions s, t : G →M , called source and target maps;
(2) a smooth multiplication map m : G(2) → G, defined on the space G(2) =
{(g, h) | s(g) = t(h)} of composable pairs, also denoted by m(g, h) = g.h;

(3) a diffeomorphism i : G → G, called inversion; we often write i(g) = g−1;
(4) an embedding ε : M → G, called unit map; we often write ε(x) = 1x, or

simply x.
The structure maps must satisfy the following properties:

• composition law: s(gh) = s(h), t(gh) = t(g);
• associativity law: (gh)k = g(hk)
• law of units: s(ε(x)) = t(ε(x)) = x, and gε(s(g)) = ε(t(g))g = g
• law of inverses: s(g−1) = t(g), t(g−1) = s(g) and g−1g = ε(s(g)), gg−1 =
ε(t(g)).
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We will use the notation G ⇒ M , and sometimes refer to M as the space of objects
and G as the space of arrows [groupoids are particular cases of categories].

Example 2.1.
• Manifolds M ⇒ M , where source and target maps are the identity.
• Pair and fundamental groupoids: M ×M ⇒ M , Π(M) ⇒ M .
• Lie groups G ⇒ {∗} are Lie groupoids over a point.
• Action groupoids: consider an action G y M . The product G = G×M has

a groupoid structure over M given by

s(g, x) = x, t(g, x) = g.x, m((g, x), (h, y)) = (gh, y).

We denote action groupoids by G n M . In particular, T ∗G = G × g has a
grupoid structure coming from the adjoint action.
• Tangent Lie groupoids: For a Lie groupoid G ⇒ M , we have a Lie groupoid
TG ⇒ TM , with source (resp. target) map given by T s : TG −→ TM (resp.
T t : TG −→ TM), and multiplication defined by Tm : TG(2) = (TG)(2) −→
TG. Cotangent bundles of Lie groupoids also carry natural Lie groupoid
structures, we will see this later.

There are two main ingredients of a Lie groupoid: its orbits

Ox = {t(g) | ∀g, s(g) = x},
and isotropy groups

Gx = {g | s(g) = t(g) = x}.
The orbits decompose the base M into “leaves”.

On a Lie groupoid G ⇒ M , one may still define the operations of left and right
multiplications: if s(g) = x and t(g) = y, then

lg : t−1(x)→ t−1(y), rg : s−1(y)→ s−1(x).

A Lie groupoid G ⇒ M also encodes a group of “symmetries” of the base man-
ifold: a bisection of G is a submanifold N ⊂ M if the restrictions t|N and s|N are
diffeomorphisms from N to M ; the space of bisections has a natural group operation,
and give rise to diffeomorphisms of M .

Lie groupoid morphisms and subgroupoids are defined in a natural way.
The simplest multiplicative objects on a Lie groupoid G ⇒ M are multiplicative

functions: there are functions f : G → R satisfying

f(gh) = f(g) + f(h),

i.e., groupoid morphisms into R ⇒ {∗}.

2.3. Symplectic groupoids. The cotangent bundle of a Lie group is the prototyp-
ical example of a symplectic groupoid: it is naturally a symplectic manifold and can
be seen as an action groupoid G n g∗ (adjoint action). We will see how symplectic
and groupoid structures are compatible.

A Lie groupoid G ⇒ M equipped with a symplectic form ω ∈ Ω2(G) is called a
symplectic groupoid if the graph

Γm = {(g, h, gh) | (g, h) ∈ G(2)}
of the groupoid multiplication is a lagrangian submanifold of

(G, ω)× (G, ω)× (G,−ω);
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We will commonly use the notation G for G equipped with −ω.
The definition comes from quantization...
Several properties follow:
(1) the embedding ε : M → G is lagrangian;
(2) the inversion i : G → G is anti-symplectomorphism;
(3) for any g ∈ G, ker(T s)g = ker(T t)ωg ; in particular {s∗C∞(M), t∗C∞(M)} = 0;
(4) There is a unique Poisson structure on M for which t : G → M is a Poisson

map [in this case, s is an anti-Poisson map...
This last result reveals a key property of symplectic groupoids: they are symplectic

realizations of their bases.
Some simple examples are:

Example 2.2. For M symplectic, M ×M , or the fundamental groupoid Π(M), are
symplectic groupoids; the induced Poisson structure on M is the same symplectic
structure.

A cotangent bundle T ∗M ⇒ M , with groupoid structure given by fibrewise addi-
tion, is a symplectic groupoid; the induced Poisson structure on M is zero.

The key example is T ∗G ⇒ g∗, with groupoid structure given by action T ∗G =
Gn g∗; the induced Poisson structure on g∗ is the linear/Lie (KKS)-Poisson one.

Given Poisson manifold (M,π), can one find a symplectic groupoid G ⇒ M so
that t is a Poisson map? Is it unique? This is a type of integration problem (for g∗,
it leads to a proof of Lie’s third theorem).

Applications: Hamiltonian actions and moment maps; quantization...

2.4. Poisson groupoids. One can consider Poisson structures compatible with Lie
groupoids and unify Poisson Lie groups and symplctic groupoids.

Let G ⇒ M be a Lie groupoid equipped with a Poisson structure π ∈ Γ(∧2TG);
we say that (G, π) is a Poisson groupoid if the graph Γm of the multiplication map
is coisotropic in (G, π)× (G, π)× (G,−π).

Examples...
What is the infinitesimal description of a Poisson groupoid? Need first infinitesi-

mal description of Lie groupoids... Let us start with Poisson Lie groups.

3. Infinitesimal descriptions

3.1. Lie bialgebras. Recall different viewpoints to Lie algebras: Gerstenhaber
bracket, CE-differential, Linear Poisson structures...

Given a Poisson Lie group (G, π), what is its description in terms of Lie algebra
data?

Introduce Lie bialgebras; correspondence theorem for Poisson Lie groups and Lie
bialgebras.

Examples.
Drinfeld doubles and Manin triples.
Examples of dual groups.

3.2. Lie algebroids. We now move to the infinitesimal description of a Lie groupoid.
A Lie algebroid over a manifold M is a vector bundle A → M equipped with a

bundle map ρA : A → TM and a Lie bracket [·, ·]A on the space of sections Γ(A)
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such that
[u, fv]A = f [u, v]A + (LρA(u)f)v,

for u, v ∈ Γ(A) and f ∈ C∞(M). This last condition is known as the Leibniz identity.
The map ρ : A→ TM is called the anchor.

Example 3.1.

• Lie algebras (g, [·, ·]) are Lie algebroids over a point.
• A = TM , [·, ·] is the Lie bracket of vector fields, ρ = id. More generally, any

involutive subbundle F ⊆ TM defines a Lie algebroid.
• Lie algebroid structures on trivial line bundle R×M → M are the same as

vector fields on M .
• Generalizing the previous item: given an infinitesimal action ρ : g→ X(M),

i.e, a Lie-algebra map, one can endow the trivial bundle A = M × g → M
with a natural Lie-algebroid structure. The anchor is given by the action map
g ×M → TM , and the bracket on Γ(A) = C∞(M, g) is uniquely defined by
the Leibniz rule and the fact that it agrees with the Lie-algebra bracket on
constant sections g ⊂ C∞(M, g. This Lie algebroid is called an action Lie
algebroid, and denoted by g×M .

The kernel of the anchor map ρA : A → TM at each point defines a Lie algebra,
and its image ρA(A) ⊂ TM defines an integrable (generalized) smooth distribution
on M . We refer to the integral leaves as orbits of the Lie algebroid.

Poisson manifolds give natural examples of Lie algebroids:

Example 3.2. Let (M,π) be a Poisson manifold. Then T ∗M → M is naturally
a Lie algebroid, with anchor π] : T ∗M → TM and bracket on Ω1(M) defined by
[df, dg] = d{f, g}; the general formula is

[α, β] = Lπ](α)β − Lπ](β)α− dπ(α, β).

The orbits are the symplectic leaves, and the transversal Lie algebra structures agree
with the ones coming from linearized Poisson structure on the conormal bundle.

Just as Lie algebroids, there are equivalent viewpoints to Lie algebroids that we
will be useful to have in mind. A Lie algebroid (A, [·, ·], ρ) can be alternatively
viewed in one of the following ways: as Gerstenhaber bracket on Γ(∧•A), differential
on Γ(∧•A∗), or linear Poisson structure on A∗. In particular, Lie algebroids can be
seen as particular types of Poisson manifolds.

Tangent and cotangent Lie algebroids...
The Lie algebroid of a Lie groupoid G ⇒ M : A = ker(T s)|M → M , anchor is

ρ = T t|A : A → TM , Lie bracket is given by identifying Γ(A) with right-invariant
vector fields on G.

Cotangent Lie groupoid: T ∗G ⇒ A∗.
Lie theorems.

3.3. Poisson structures as infinitesimal structures. If (G, ω) ⇒ (M,π) is a
symplectic groupoid, then the Lie algebroid A of G and the Lie algebroid T ∗M of
(M,π) are naturally isomorphic. Hence finding a symplectic groupoid for a Poisson
manifold solves the integration problem for its Lie algebroid.
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The converse is not exactly true; i.e., one may have Lie groupoids integrating
the Lie algebroid T ∗M which are not symplectic groupoids. But the source-simply-
connected integration is always a symplectic groupoid integrating π. So if T ∗M is
integrable as a Lie algebroid, then a symplectic groupoid exists.

State the Poisson manifold/symplectic groupoid correspondence theorem.
Infinite-dimensional and finite-dimensional approaches to the proof.

3.4. Lie bialgebroids. Define Lie bialgebroids. Poisson groupoid/Lie bialgebroid
correspondence theorem.

Doubles of Lie bialgebroids: Courant algebroids. Equivalence of Lie bialgebroids
and pair of transversal Dirac structures.

4. Multiplicative structures

What about more general multiplicative objects? Just like multiplicative symplec-
tic forms are related to Poisson structures, more general multiplicative forms (higher
degree, nonclosed..), multivectors, tensors have their corresponding infinitesimal ge-
ometry.

4.1. Multiplicative forms. Definition of multiplicative forms. Infinitesimal de-
scription: the global-infinitesimal correspondence.

Examples: (twisted) Dirac structures and presymplctic groupoids, equivariant
cohomology, Cartan-Dirac structures on Lie groups and AMM double.

4.2. Multiplicative multivector fields. The global-infinitesimal correspondence.

4.3. Other multiplicative tensors. Time permitting: General multiplicative ten-
sors of mixed type. Infinitesimal description, global-infinitesimal correspondence.

Example: The global-infinitesimal correspondence for multiplicative Nijenhuis op-
erators.

4.4. Conclusion. Other multiplicative objects, e.g. distributions and foliations...
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