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Motivation: Totally Positive Matrices

Totally Positive Matrices

An n × n matrix A is totally positive if all its minors are positive.

Note that the number of all minors grows exponentially with size.
However, one can select (not uniquely) a family F of just n2 minors of A
such that A is totally positive iff every minor in the family is positive.
(Berenshtein-Fomin-Zelevinsky)
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n = 3
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Motivation: Totally Positive Matrices

Properties

Every other ”test family” of 9 minors

contains ∆3
1,∆

1
3,∆

23
12,∆

12
23,∆

123
123

can be obtained from F1 (or F2) via a sequence of similar
transformations

defines coordinate system on GL(3) bi-rationally related to natural
coordinates A = (aij )

3
i ,j=1.

The intersection of opposite big Bruhat cells

B+w0B+ ∩ B−w0B− ⊂ GL(3)

coincides with

{A ∈ GL(3)|∆3
1∆1

3∆23
12∆12

23∆123
123 6= 0}

The number of connected components of this intersection can be
computed using families Fi .
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Instructive example

Homogeneous coordinate ring C[Gr2,n+3]

Gr2,n+3 ={V⊂Cn+3 :dim(V )=2}. The ring A = C[Gr2,n+3] is generated
by the Plücker coordinates xij , for 1 ≤ i < j ≤ n + 3.
Relations: xikxjl =xij xkl +xil xjk , for i< j<k< l .

sides: scalars

diagonals:
cluster variables

relations: “flips”

clusters:
triangulations

r r

r r
r

1 5

2 4

3

x15

x12 x45

x23 x34

x24
x35x13

x25 x14

Each cluster has exactly n elements, so A is a cluster algebra of rank n.
The monomials involving “non-crossing” variables form a linear basis in A
(studied in [Kung-Rota]).

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 6 / 96



Instructive example

Double Bruhat cell in SL(3)

A = C[G u,v ], where G u,v = BuB ∩ B−vB− =

=








x α 0
γ y β
0 δ z


 ∈ SL3(C) :

α 6= 0 β 6= 0
γ 6= 0 δ 6= 0





is a double Bruhat cell (u,v ∈S3, `(u)=`(v)=2).
Ground ring: A = C[α±1, β±1, γ±1, δ±1].

Five cluster variables. Exchange relations:

xy =
∣∣∣
∣∣∣ x α
γ y

∣∣∣
∣∣∣+ αγ yz =

∣∣∣
∣∣∣ y β
δ z

∣∣∣
∣∣∣+ βδ

x
∣∣∣
∣∣∣ y β
δ z

∣∣∣
∣∣∣ = αγz + 1 z

∣∣∣
∣∣∣ x α
γ y

∣∣∣
∣∣∣ = βδx + 1

∣∣∣
∣∣∣ x α
γ y

∣∣∣
∣∣∣ ·
∣∣∣
∣∣∣ y β
δ z

∣∣∣
∣∣∣ = αβγδ + y .
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Definition of Cluster Algebras

Definition

Exchange graph of a cluster algebra:
vertices ' clusters
edges ' exchanges.

Tm m-regular tree with {1, 2, . . .m}-labeled edges,

adjacent edges receive different labels

T1
u u1

T2
s s s s s s s1 1 12 2 2
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Definition of Cluster Algebras
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Definition of Cluster Algebras

Cluster algebras of geometric type

y = (y1, . . . , yn−m) − frozen variables,

x(t) = (x1(t), . . . , xm(t)) − cluster variables,

z(t) = (z1(t), . . . , zn(t)) = (x(t), y)− extended cluster

variables.

Definition

Cluster algebra A is given by pair (B(t), z(t)) for each cluster (vertex of
exchange graph) t

B(t) is an m × n integral matrix (m ≤ n) whose left m ×m block is
left-skew-symmetrizable, (we will assume it skew-symmetric for simplicity)

z(t) is a vector of extended cluster variables.

variables zm+1 = y1, . . . , zn = yn−m are not affected by Ti .

both B(t) and z(t) are subject to cluster transformations defined as follows.
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Definition of Cluster Algebras

Cluster transformations

Cluster change

For an edge of Tm i ∈ [1, . . . ,m]s sit t′

Ti : z(t) 7→ z(t ′) is defined as

xi (t ′) =
1

xi (t)


 ∏

bik (t)>0

zk (t)bik (t) +
∏

bik (t)<0

zk (t)−bik (t)




zj (t ′) = zj (t) j 6= i ,

Matrix mutation B(t ′) = Ti (B(t)) ,

bkl (t ′) =




− bkl (t), if (k − i)(l − i) = 0

bkl (t) +
|bki (t)|bil (t) + bki (t)|bil (t)|

2
, otherwise.
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Definition of Cluster Algebras

Definition

Given some initial cluster t0 put zi = zi (t0), B = B(t0). The cluster
algebra A (or, A(B)) is the subalgebra of the field of rational functions in
cluster variables z1, . . . , zn generated by the union of all cluster variables
zi (t).
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Definition of Cluster Algebras

Examples of Ti(B)

A matrix B(t) can be represented by a (weighted, oriented) graph.
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Definition of Cluster Algebras

The Laurent phenomenon

Theorem (FZ) In a cluster algebra, any cluster variable is expressed in
terms of initial cluster as a Laurent polynomial.

Positivity Conjecture

All these Laurent polynomials have positive integer coefficients
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Definition of Cluster Algebras

Examples of Cluster Transformations

Short Plücker relation in Gk(n)

xijJxklJ = xikJxjlJ + xilJxkjJ

for 1 ≤ i < k < j < l ≤ m, |J| = k − 2.

Whitehead moves and Ptolemy relations in Decorated Teichmüller
space:

M

P Q

N

b

d

a

b

c
q

d

p ca

M N

P Q

f (p)f (q) = f (a)f (c) + f (b)f (d)
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Compatible Poisson structure and 2-form

τ -coordinates

Nondegenerate coordinate change:

τi (t) =

{∏
j 6=i zj (t)bij (t) for i 6 m,∏
j 6=i zj (t)bij (t)/zi (t) for m + 1 6 i 6 n.

Exchange in direction i :

τi 7→
1

τi
; τj 7→




τj (1 + τi )

bij , if bij > 0,

τj

(
τi

1+τi

)−bij

, otherwise.

Definition

We say that a skew-symmetrizable matrix A is reducible if there exists a
permutation matrix P such that PAPT is a block-diagonal matrix, and
irreducible otherwise. The reducibility ρ(A) is defined as the maximal
number of diagonal blocks in PAPT . The partition into blocks defines an
obvious equivalence relation ∼ on the rows (or columns) of A.
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Compatible Poisson structure and 2-form

Compatible Poisson structures

A Poisson bracket {·, ·} is compatible with the cluster algebra A if, for
any extended cluster z̃ = (z1, . . . , zn)

{zi , zj} = ωij zi zj ,

where ωij ∈ Z are constants for all i , j ∈ [1, n + m].

Theorem

For an B ∈ Zn,n+m as above of rank n the set of compatible Poisson
brackets has dimension ρ(B) +

(m
2

)
. Moreover, the coefficient matrices Ωτ

of these Poisson brackets in the basis τ are characterized by the equation
Ωτ [m, n] = ΛB for some diagonal matrix Λ = diagonal(λ1, . . . , λn) where
λi = λj whenever i ∼ j .
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Compatible Poisson structure and 2-form

Degenerate exchange matrix

Example

Cluster algebra of rank 3 with trivial coefficients. Exchange matrix

B =




0 1 −1
−1 0 1
1 −1 0


. Compatible Poisson bracket must satisfy

{x1, x2} = λx1x2, {x1, x3} = µx1x3, {x2, x3} = νx2x3
Exercise: Check that these conditions imply λ = µ = ν = 0.
Conclusion: Only trivial Poisson structure is compatible with the cluster algebra.

What to do?

We will use the dual language of 2-forms
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Compatible Poisson structure and 2-form

Compatible 2-forms

Definition

2-form ω is compatible with a collecion of functions {fi} if

ω =
∑

i ,j ωij
dfi
fi
∧ dfj

fj

Definition

2-form ω is compatible with a cluster algebra if it is compatible with all
clusters.

Exercise

Check that the form ω = dx1
x1
∧ dx2

x2
− dx1

x1
∧ dx3

x3
+ dx2

x2
∧ dx3

x3
is compatible

with the example above.
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Compatible Poisson structure and 2-form

Compatible 2-forms

Theorem

For an B ∈ Zn,n+m the set of Poisson brackets for which all extended
clusters in A(B) are log-canonical has dimension ρ(B) +

(m
2

)
. Moreover,

the coefficient matrices Ωx of these 2-forms in initial cluster are
characterized by the equation Ωx[m, n] = ΛB, where
Λ = diagonal(λ1, . . . , λn), with λi = λj 6= 0 whenever i ∼ j .
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Compatible Poisson structure and 2-form

Cluster manifold

For an abstract cluster algebra of geometric type A of rank m we
construct an algebraic variety A (which we call cluster manifold)

Idea: A is a ”good” part of Spec(A).

We will describe A by means of charts and transition functions.
For each cluster t we define an open chart

A(t) = Spec(C[x(t), x(t)−1, y]),

where x(t)−1 means x1(t)−1, . . . , xm(t)−1.
Transitions between charts are defined by exchange relations

xi (t ′)xi (t) =
∏

bik (t)>0

zk (t)bik (t) +
∏

bik (t)<0

zk (t)−bik (t)

zj (t ′) = zj (t) j 6= i ,

Finally, A = ∪tA(t).
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Compatible Poisson structure and 2-form

Nonsingularity of A

A contains only such points p ∈ Spec(A) that there is a cluster t whose
cluster elements form a coordinate system in some neighborhood of p.
Observation The cluster manifold A is nonsingular and possesses a
Poisson bracket that is log-canonical w.r.t. any extended cluster.
Let ω be one of these Poisson brackets.
Casimir of ω is a function that is in involution with all the other functions
on A. All rational casimirs form a subfield FC in the field of rational
functions C(A). The following proposition provides a complete description
of FC .
Lemma FC = F (m1, . . . ,ms), where mj =

∏
y
αji

i for some integral αji ,
and s = corankω.
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Compatible Poisson structure and 2-form

Toric action

We define a local toric action on the extended cluster t as the C∗-action
given by the formula zi (t) 7→ zi (t) · ξwi (t), ξ ∈ C∗ for some integral wi (t)
(called weights of toric action).
Local toric actions are compatible if taken in all clusters they define a
global action on A. This toric action is said to be an extension of the
above local actions.
A0 is the regular locus for all compatible toric actions on A.
A0 is given by inequalities yi 6= 0.
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Compatible Poisson structure and 2-form

Symplectic leaves

A is foliated into a disjoint union of symplectic leaves of ω.
Given generators q1, . . . , qs of the field of rational casimirs FC we have a
map Q : A→ Cs , Q(x) = (q1(x), . . . , qs(x)).
We say that a symplectic leaf L is generic if there exist s vector fields ui

on A such that
a) at every point x ∈ L, the vector ui (x) is transversal to the surface
Q−1(Q(L));
b) the translation along ui for a sufficiently small time t gives a
diffeomorphism between L and a close symplectic leaf Lt .
Lemma A0 is foliated into a disjoint union of generic symplectic leaves of
the Poisson bracket ω.
Remark Generally speaking, A0 does not coincide with the union of all
“generic” symplectic leaves in A.
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Compatible Poisson structure and 2-form

Connected components of A0

Question: find the number #(A0) of connected components of A0.
Let Fn

2 be an n-dimensional vector space over F2 with a fixed basis {ei}.
Let B ′ be a n × n- matrix with Z2 entries defined by the relation
B ′ ≡ B(t) (mod 2) for some cluster t, and let ω = ωt be a
(skew-)symmetric bilinear form on Fn

2 , such that ω(ei , ej ) = b′ij . Define a
linear operator ti : Fn

2 → Fn
2 by the formula ti (θ) = ξ − ω(θ, ei )ei , and let

Γ = Γt be the group generated by ti , 1 6 i 6 m.
Theorem The number of connected components #(A0) equals to the
number of Γt-orbits in Fn

2 .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 25 / 96



A− and X− manifolds

Cluster A− and X− manifolds

Coordinate ring Manifold

A− cluster algebra
with cluster coordinates xi

A− cluster variety
with compatible 2-form

xπ∗ π:τi=
∏n+m

j=1 x
bij
j

y
X − algebra generated by τi X− Poisson cluster variety
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A− and X− manifolds

Let Ω be a 2-form.

KerΩ = {vector ξ : Ω(ξ, η) = 0 ∀η} provides a fibration of the underlying
vector space.

{space of fibers of KerΩ} → Imπ is a local diffeomorphism.

More generally, let Ω be a compatible 2-form on a cluster manifold A of
coefficient-free cluster algebra A.

KerΩ determines an integrable distribution in TA.

Generic fibers of KerΩ form a smooth manifold X̃ whose dimension is
rank(B).

π : A→ X̃ is a natural projection.

Then, Ω̃ = π∗(Ω) is a symplectic form on X̃ dual to the Poisson structure.
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Applications and Examples

Application of Compatible Poisson Structures

If a Poisson variety (M, {·, ·}) possesses a coordinate chart that consists
of regular functions whose logarithms have pairwise constant Poisson
brackets, then one can use this chart to define a cluster algebra AM that is
closely related (and, under rather mild conditions, isomorphic) to the ring
of regular functions on M and such that {·, ·} is compatible with AM.
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Applications and Examples

Examples

(Decorated) Teichmüller space has a natural structure of cluster
algebra. Weyl-Petersson symplectic form is the unique symplectic
form ”compatible” with the structure of cluster algebra.

There exists a cluster algebra structure on SLn compatible with
Sklyanin Poisson bracket. A0 is the maximal double Bruhat cell.

There exists a cluster algebra structure on Grassmanian compatible
with push-forward of Sklyanin Poisson bracket. A0 determined by the
inequalities {solid Plücker coordinate 6= 0} .

We will now provide a detailed discussion of the last two examples.
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Poisson-Lie Groups

Poisson-Lie Groups

Let G be a Lie group.

Definition

The Poisson structure {, } on G is called Poisson-Lie if the multiplication
map m : G × G → G is Poisson.

Example

Sl2. Borel subgroup B ⊂ Sl2 is the set

{(
t x
0 t−1

)}

Poisson structure on B: {t, x} = tx .

Induced Poisson structure on B × B =

{(
t1 x1
0 t−11

)
,

(
t2 x2
0 t−12

)}
:

{t1, x1} = t1x1, {t2, x2} = t2x2. All other brackets are 0.

(
t1 x1
0 t−11

)
·
(

t2 x2
0 t−12

)
=

(
t1t2 t1x2 + x1t−12

0 t−11 t−12

)
=

(
u v
0 u−1

)
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Poisson-Lie Groups

For coordinates u, v

{m?(u),m∗(v)}G×G = {t1t2, t1x2 + x1t−12 }G×G = t21 t2x2 + t1x1.
On the other hand,

m? ({u, v}G ) = m?(uv) = t21 t2x2 + t1x1,

which proves Poisson-Lie property.
Similarly, we define Poisson-Lie bracket for B−.
Then, if we have embedded Poisson subgroups B and B− they define a
Poisson-Lie structure on SL2 they generate.
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Poisson-Lie Groups

To define Poisson-Lie bracket on the whole SL2 we use Gauss
decomposition of the open dense part of SL2 into B−B+.

Indeed,

(
t1 0

y1 t−11

)(
t2 x2
0 t−12

)
=

(
t1t2 t1x2
y1t2 y1x2 + t−11 t−12

)

Hence,

{z11, z12} = {t1t2, t1x2} = t21 t2x2 = z11z12,

{z11, z21} = {t1t2, y1t2} = t22 t1y1 = z11z21,

{z11, z22} = {t1t2, y1x2 + t−11 t−12 } = 2t1y1t2x2 = 2z12z21,

{z12, z21} = {t1x2, y1t2} = 0,

{z12, z22} = {t1x2, y1x2 + t−11 t−12 } = t1y1t2x2
2 + x2/t2 = z12z22,

{z21, z22} = {y1t2, y1x2 + t−11 t−12 } = y2
1 t2x2 + y1/t1 = z21z22.
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1 t2x2 + y1/t1 = z21z22.
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Poisson-Lie Groups

To define Poisson-Lie bracket on the whole SL2 we use Gauss
decomposition of the open dense part of SL2 into B−B+.

Indeed,
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y1 t−11
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t2 x2
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=
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Poisson-Lie Groups

Poisson-Lie bracket for SLn

Standard embeddings SL2 ⊂ SLn define Poisson submanifold with respect
to standard Poisson-Lie bracket.

Any fixed reduced decomposition of the
maximal element of the Weyl group determines a Poisson map
(n−1

2 )∏

1

SL2 → SLn.Then, for X = (xij ) ∈ SLn we have

{xij , xki} = xij xik for j < k , {xji , xki} = xji xki for j < k
{xij , xkl} = xil xkj for i < k, j < l , {xij , xkl} = 0 for i < k , j > l
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Poisson-Lie Groups

R-matrix

One can construct a Poisson-Lie bracket using R −matrix .

Definition

A map R : g → g is called a classical R −matrix if it satisfies modified
Yang-Baxter equation

[R(ξ),R(η)]− R ([R(ξ), η] + [ξ,R(η)]) = −[ξ, η]

R-matrix Poisson bracket

R-matrix Poisson-Lie bracket on SLn :

{f1, f2}(X ) =
1

2
(〈R(∇f1(X )X ),∇f2(X )X 〉 − 〈R(X∇f1(X )),X∇f2(X ))]〉) ,

where gradient ∇f ∈ sln defined w.r.t. trace form.
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Poisson-Lie Groups

Example

For any matrix X we write its decomposition into a sum of lower triangular
and strictly upper triangular matrices as

X = X− + X0 + X+

The standard R-matrix R : Matn → Matn defined by

R(X ) = X+ − X−

The standard R-matrix Poisson-Lie bracket:

{xij , xαβ}(X ) =
1

2
(sign(α− i) + sign(β − j))xiβxαj
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Poisson-Lie Groups

Poisson Homogeneous Spaces

X is a homogeneous space of an algebraic group G , i.e.,

m : G × X → X .

G is equipped with Poisson-Lie structure.

Definition

Poisson bracket on X equips X with a structure of a Poisson homogeneous
space if m is a Poisson map.
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Example: Cluster Structure on Grassmannians

Grassmannian Gk(n)

Grassmannian Gk (n) of k-dimensional subspaces of n-dimensional space.
SLn acts freely on Gk (n).

Maximal Schubert cell G 0
k (n) ⊂ Gk(n) contains elements of the form(

1 Y
)

where Y = (yij ), i ∈ [1, k]; j ∈ [1, n − k].
Poisson homogeneous bracket w.r.t. the standard Poisson-Lie bracket on
SLn:

{yij , yα,β} =
1

2
((sign(α− i)− sign(β − j)) yiβyα,j

To find a cluster structure in Gk(n), need to find a coordinate system
compatible with the bracket above.
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Example: Cluster Structure on Grassmannians

Cluster algebra structure on Grassmannians

The open cell in Gk(n) :

G 0
k (n) = {X ∈ Gk(n) : X = [1k Y ]}

Initial extended cluster :

Fij = (−1)(k−i)(l(i ,j)−1)Y [j ,j+l(i ,j)]
[i−l(i ,j),i ] , l(i , j) = min(i − 1, n − k − j)

i

F

F
i  j

ij

i

j j

Y

Figure: To the definition of Fij
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Example: Cluster Structure on Grassmannians

Initial exchange matrix B̃

:
a (0,±1)-matrix represented by a directed graph (quiver)

1

2

3

4

mm−1m−2m−3m−4

Initial cluster transformations are built out of short Plücker relations.
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And now for something completely different ....
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Planar Networks

Weighted network N in a disk

G = (V ,E ) - directed planar graph drawn inside a disk with the
vertex set V and the edge set E .

Exactly n of its vertices are located on the boundary circle of the disk.
They are labelled counterclockwise b1, . . . , bn and called boundary
vertices.

Each boundary vertex is labelled as a source or a sink.
I = {i1, . . . , ik} ⊂ [1, n] is a set of sources. J = [1, n] \ I - set of sinks.

All the internal vertices of G have degree 3 and are of two types:

either they have exactly one incoming edge, or exactly one outcoming
edge. The vertices of the first type are called white, those of the
second type, black.

To each e ∈ E we assign a weight we .
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Planar Networks

Example
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Planar Networks

Boundary Measurements

Paths and cycles

A path P in N is an alternating sequence (v1, e1, v2, . . . , er , vr+1) of
vertices and edges such that ei = (vi , vi+1) for any i ∈ [1, r ].
A path is called a cycle if vr+1 = v1

Concordance number ≈ rotation number

For a closed oriented polygonal plane curve C , let e ′ and e ′′ be two
consequent oriented segments of C , v – their common vertex. Let l be an
arbitrary oriented line. Define cl (e ′, e ′′) ∈ Z/2Z in the following way:
cl (e ′, e ′′) = 1 if the directing vector of l belongs to the interior of the cone
spanned by e ′ and e ′′ , cl (e ′, e ′′) = 0 otherwise.
Define cl (C ) as the sum of cl (e ′, e ′′) over all pairs of consequent segments
in C . cl (C ) does not depend on l , provided l is not collinear to any of the
segments in C . The common value of cl (C ) for different choices of l is
denoted by c(C ) and called the concordance number of C .
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Planar Networks

Example
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Figure: cl (e1, e2) = cl (e5, e2) = 0; cl (e2, e3) = 1, cl (e2, e6) = 0;
cl (e6, e7) = 1, cl (e7, e8) = 0
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Planar Networks

Boundary Measurements (cont’d)

Weight of a path

A path P between a source bi and a sink bj

 a closed polygonal curve
CP = P∪ counterclockwise path btw. bj and bi along the boundary.
The weight of P :

wP = (−1)c(CP)−1
∏

e∈P

we .

Boundary Measurement

M(i , j) =
∑

weights of all paths starting at bi and ending at bj

Proposition (Postnikov)

Each boundary measurement is a rational function in the weights we

admitting a subtraction-free rational expression.

Boundary Measurement Matrix: MN = (M(ip, jq))
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Planar Networks

Example
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MN =




w3w4w5w6w10

1 + w3w7w10w11

w3w5w6w8w11

1 + w3w7w10w11

w1w3w4(w2 + w6w9w10)

1 + w3w7w10w11

w1w3w8w11(w2 + w6w9w10)

1 + w3w7w10w11


 .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 46 / 96



Planar Networks

Example

w

2

b1

b3

b4

w w

b

l

1 2 3 4

11109

5 6 7 8

w w w w

w w w

w

MN =




w3w4w5w6w10

1 + w3w7w10w11

w3w5w6w8w11

1 + w3w7w10w11

w1w3w4(w2 + w6w9w10)

1 + w3w7w10w11

w1w3w8w11(w2 + w6w9w10)

1 + w3w7w10w11


 .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 46 / 96



Network concatenation and the standard Poisson-Lie
structure

The construction above is due to Postnikov– extension of results by
Karlin-McGregor, Lindström, Gessel-Viennot, Brenti,

Berenshtein-Fomin-Zelevinsky,...motivated by the study of total
positivity.

Recall:

If sources and sinks of N do not interlace:

place N in a square rather than in a disk, with all sources located on
the left side and sinks on the right side of the square

re-label sources/sinks from bottom to top

MN  AN = MNW0

where W0 = (δi ,m+1−j )
m
i ,j=1 is the matrix of the longest permutation

concatenation of networks ⇐⇒ matrix multiplication
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Building Blocks:

Diagonal matrix D = diag(d1, . . . , dn) and elementary bidiagonal matrices
E−i (`) := 1 + `ei ,i−1 and E+

j (u) := 1 + uej−1,j correspond to:

c)b)

d nn

d 22

n

2

d 11 1

n

j

1 1

j

n

ul

n

i

1 1

i

n

i−1 i−1 j−1 j−1

a)
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Concatenation of several networks these types with appropriately chosen
order and weights can be used to describe any element of GLn:

d1

d2

dn

u1 un1l

−1nd

−1nl

nlkl un

l −1k

l −2k

−1n

−1k

−2k

n −1 n −1

d3
u22l

1

n

3

u

u

u

n

3

1

22

Figure: Generic planar network ⇐⇒ Generic matrix

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 49 / 96



Concatenation of several networks these types with appropriately chosen
order and weights can be used to describe any element of GLn:

d1

d2

dn

u1 un1l

−1nd

−1nl

nlkl un

l −1k

l −2k

−1n

−1k

−2k

n −1 n −1

d3
u22l

1

n

3

u

u

u

n

3

1

22

Figure: Generic planar network ⇐⇒ Generic matrix

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 49 / 96



Standard Poisson-Lie Structure via building blocks

Restriction of {·, ·}R0
to subgroups

B
(i)
+ =

{
1i−1 ⊕

(
d c
0 d−1

)
⊕ 1n−i−1

}
,B(i)− =

{
1i−1 ⊕

(
d 0
c d−1

)
⊕ 1n−i−1

}

is

{d , c}R0 =
1

2
dc .

Can be described in terms of adjacent edges in corresponding networks !
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General networks in a disc ?

Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary
of another disc so that each source/sink in the first segment is glued to a
source/sink of the second.

Half-edge weights

Internal vertex v  R3
v = {x1

v , x
2
v , x

3
v } :

2

v

1
x

v

1

v

x

v v

x
v

2

x
v

3

x
v

3

x

Equip each R3
v with a Poisson bracket  C = ⊕vR3

v inherits
{·, ·}C = ⊕v{·, ·}v .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 51 / 96



General networks in a disc ?

Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary
of another disc so that each source/sink in the first segment is glued to a
source/sink of the second.

Half-edge weights

Internal vertex v  R3
v = {x1

v , x
2
v , x

3
v } :

2

v

1
x

v

1

v

x

v v

x
v

2

x
v

3

x
v

3

x

Equip each R3
v with a Poisson bracket  C = ⊕vR3

v inherits
{·, ·}C = ⊕v{·, ·}v .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 51 / 96



General networks in a disc ?

Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary
of another disc so that each source/sink in the first segment is glued to a
source/sink of the second.

Half-edge weights

Internal vertex v  R3
v = {x1

v , x
2
v , x

3
v } :

2

v

1
x

v

1

v

x

v v

x
v

2

x
v

3

x
v

3

x

Equip each R3
v with a Poisson bracket

 C = ⊕vR3
v inherits

{·, ·}C = ⊕v{·, ·}v .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 51 / 96



General networks in a disc ?

Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary
of another disc so that each source/sink in the first segment is glued to a
source/sink of the second.

Half-edge weights

Internal vertex v  R3
v = {x1

v , x
2
v , x

3
v } :

2

v

1
x

v

1

v

x

v v

x
v

2

x
v

3

x
v

3

x

Equip each R3
v with a Poisson bracket  C = ⊕vR3

v inherits
{·, ·}C = ⊕v{·, ·}v .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 51 / 96



General networks in a disc ?

Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary
of another disc so that each source/sink in the first segment is glued to a
source/sink of the second.

Half-edge weights

Internal vertex v  R3
v = {x1

v , x
2
v , x

3
v } :

2

v

1
x

v

1

v

x

v v

x
v

2

x
v

3

x
v

3

x

Equip each R3
v with a Poisson bracket  C = ⊕vR3

v inherits
{·, ·}C = ⊕v{·, ·}v .

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 51 / 96



Universal Poisson Brackets

{·, ·}C is universal if

1 Each of {·, ·}v depends only on the color of the vertex v .

2 The natural map C→ REdges : edge weight = product of half-edge
weights induces a Poisson structure on REdges

This is an analog of the Poisson–Lie property

Proposition

Universal Poisson brackets {·, ·}C a 6-parametric family defined by relations

{x i
v , x

j
v}v = αij x

i
v x j

v , i , j ∈ [1, 3], i 6= j ,

at each white vertex v and

{x i
v , x

j
v}v = βij x

i
v x j

v , i , j ∈ [1, 3], i 6= j ,

at each black vertex v .
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Poisson Properties of the Boundary Measurement Map

Theorem

1 For any network N in a square with n sources and n sinks and for any
choice of αij , βij the map AN : REdges → Matn is Poisson w. r. t. the
Sklyanin bracket associated with the R-matrix

Rα,β =
α− β

2
(π+ − π−) +

α + β

2
Sπ0,

where S(ejj ) =
∑k

i=1 s(j − i)eii , j = 1, . . . , k .
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Cluster Algebra structure on boundary measurements

Cluster algebra structure on boundary measurements

Transformations preserving boundary measurements

Gauge group acts on the space of edge weights

Elementary transformations

Edge weights modulo gauge group are Face Coordinates

Face weight yf of a face f is a Laurent monomial :

yf =
∏

e∈∂f

wγe
e ,

where γe = 1 if the direction of e is compatible with the orientation of
the boundary ∂f and γe = −1 otherwise.
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Cluster Algebra structure on boundary measurements

Poisson structure on face coordinates

{yf , yf ′} = ωff ′yf yf ′ .

where ωff ′ are determined by the dual graph

−β

2

b1

α−β
α

b

α−β

α−β
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Cluster Algebra structure on boundary measurements

Elementary transformations

y
1 w2

w4

w1 w2

w3 w4

w1 w2

w3

w4

w3

w4
w2w111+

w2w111+

1

w2w111+

w1

w2w111+

w2

w1 w2

w3 w43w

w1 w2

w4

y

Type 1

Type 2

Type 3
y x

y’ x’

x

w

3w

1
1

1
1

1

1 1

1
1x

x

y

x y

y

1

x’

x

y’

Figure: Elementary transformations

Elementary transformation of type 3 is ”Y -system type/τ -coordinates
type” cluster transformation for face coordinates

Universal Poisson structure is compatible with cluster algebra
structure
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Networks on a Cylinder

Networks on non-simply-connected higher genus surfaces?

Simplest case: networks on a cylinder

1 Images of the boundary measurement map are rational matrix-valued
functions

2 Universal Poisson brackets on edge weights lead to trigonometric
R-matrix brackets in the case when sources and sinks are located at
opposite ends of a cylinder

3 In the case of only one source and one sink, both located at the same
component of the boundary, the corresponding Poisson bracket is
relevant in the study of Toda lattices and allows to construct a cluster
algebra structure in the space of rational functions.
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Networks on a Cylinder

Example: graphical interpretation of a rational function

in

1

d 2

d 3

d 4

d 5

1c
−

2c
−

3c
−

4c
−

1c
+

2c
+

3c
+

4c
+

wout w

d

The graph ”inside” represents a 5× 5 matrix X .
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Networks on a Cylinder

The weight of a path P between a source a sink:

wP = ±λind(P∩|) ∏

edge∈P

weight(edge) ,

where | denotes a vertical cut in the picture.

Boundary Meas. M(λ) :=
∑

PwP= winwout(λ1− X )−1
11
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Networks on a Cylinder

Can apply the same strategy in general:

Take a planar network in a rectangle representing elements of a fixed
Double Bruhat cell in GLn (as above).

Glue right and left sides of a rectangle to form an annulus (cylinder)
and attach one incoming and one outgoing edge as in the previous
example.

Equip weights of the resulting network with the universal Poisson
bracket defined as above.
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Networks on a Cylinder

Theorem

Induced Poisson bracket on

Rn =

{
M(λ) =

Q(λ)

P(λ)
: deg P = n, deg Q < n, P,Q are coprime

}

is

{M(λ),M(µ)} = − (λ M(λ)− µ M(µ))
M(λ)−M(µ)

λ− µ .

It coincides with the one induced by the quadratic Poisson structure for
Toda flows.
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Now let’s tie it all together with an example...
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Cluster Algebras and Integrable Systems: Pentagram Maps

Pentagram map

R. Schwartz, V. Ovsienko, S. Tabachnikov, S. Morier-Genoud, M. Glick, F.
Soloviev, B. Khesin, G. Mari-Beffa, M. Gekhtman, M. Shapiro, A.
Vainshtein, V. Fock, A. Marshakov , ...
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Cluster Algebras and Integrable Systems: Pentagram Maps

Pentagram Map T :

T(P)

P

T(P)

P

Acts on projective equivalence classes of closed n-gons (dim= 2n − 8)

or
twisted n-gons with monodromy M (dim= 2n).
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Cluster Algebras and Integrable Systems: Pentagram Maps

Corner coordinates: left and right cross-ratios X1,Y1, . . . ,Xn,Yn.

i

i+2

v
i+1v

i−1

v
i−2

v

v

The map T becomes:

X ∗i = Xi
1− Xi−1 Yi−1
1− Xi+1 Yi+1

, Y ∗i = Yi+1
1− Xi+2 Yi+2

1− Xi Yi
.

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 65 / 96



Cluster Algebras and Integrable Systems: Pentagram Maps

Corner coordinates: left and right cross-ratios X1,Y1, . . . ,Xn,Yn.

i

i+2

v
i+1v

i−1

v
i−2

v

v

The map T becomes:

X ∗i = Xi
1− Xi−1 Yi−1
1− Xi+1 Yi+1

, Y ∗i = Yi+1
1− Xi+2 Yi+2

1− Xi Yi
.

(Poisson 2012, Utrecht) Cluster Algebras and Compatible Poisson Structures July, 2012 65 / 96



Cluster Algebras and Integrable Systems: Pentagram Maps

Theorem (OST 2010).

(i) The Pentagram Map preserves a Poisson bracket:
{Xi ,Xi+1} = −Xi Xi+1, {Yi ,Yi+1} = Yi Yi+1 ;
(ii) The Pentagram Map is completely integrable on the space of twisted
n-gons.

Complete integrability on the space of closed polygons has

been proven as well:
F. Soloviev. Integrability of the Pentagram Map, arXiv:1106.3950;

V. Ovsienko, R. Schwartz, S. Tabachnikov. Liouville-Arnold

integrability of the pentagram map on closed polygons, arXiv:1107.3633.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Cluster algebras and integrable systems:

Q-systems (DiFrancesco, Kedem)

T- and Y-systems (Inoue, Iyama, Keller, Kuniba, Nakanishi)

Somos sequences (Fordy, Hone, Marsh)

Coxeter-Toda lattices ( GSV)

Dimers ( Goncharov, Kenyon)
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Cluster Algebras and Integrable Systems: Pentagram Maps

Cluster interpretation for the Pentagram Map?

M. Glick. The pentagram map and Y -patterns ( Adv. Math., 227
(2011), 1019--1045) :

Considered the dynamics in the 2n − 1-dimensional quotient space by the
scaling symmetry (X ,Y ) 7→ (tX , t−1Y ):

pi = −Xi+1Yi+1, qi = − 1

Yi Xi+1
,

and proved that it was a Y -type cluster algebra dynamics.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Cluster dynamics

Recall - Matrix mutations and transformations of τ -coordinates in the
definition of a cluster algebra is equivalent to quiver mutations:

Given a quiver (an oriented graph with no loops or 2-cycles) whose
vertices are labeled by variables τi (rational functions in some free
variables), the mutation associated with a vertex i is

j i k
τ∗i =

1

τi
, τ∗j =

τjτi

1 + τi
, τ∗k = τk(1 + τi );

the rest of the variables are intact.
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Cluster Algebras and Integrable Systems: Pentagram Maps

The quiver also mutates, in three steps:

(i) for every path j → i → k , add an edge j → k;
(ii) reverse the orientation of the edges incident to the vertex i ;
(iii) delete the resulting 2-cycles.

i
j k

The mutation on a given vertex is an involution.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Example of mutations:

THE PENTAGRAM MAP AND Y -PATTERNS 9

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

µ2

µ4

µ6

Figure 7. Some quiver mutations

Figure 7 illustrates some quiver mutations applied to the quiver associated with
the exchange matrix 



0 1 0 −1 0 0
−1 0 −1 0 1 0
0 1 0 0 0 −1
1 0 0 0 −1 0
0 −1 0 1 0 1
0 0 1 0 −1 0




.

Note that in this example the mutated quiver is the same as the initial one except that
all the arrows have been reversed. The is an instance of a more general phenomenon
described by the following lemma.

Lemma 3.2. Suppose that (y, B) is a Y -seed of rank 2n such that bij = 0 whenever
i, j have the same parity (so the associated quiver is bipartite). Assume also that for
all i and j the number of length 2 paths in the quiver from i to j equals the number of
length 2 paths from j to i. Then the µi for i odd pairwise commute as do the µi for i
even. Moreover, µ2n−1 ◦ · · · ◦ µ3 ◦ µ1(y, B) = (y′,−B) and µ2n ◦ · · · ◦ µ4 ◦ µ2(y, B) =
(y′′,−B) where

y′
j =

{
yj

∏
k y

[bkj]+
k (1 + yk)

−bkj , j even

y−1
j , j odd

(3.1)

y′′
j =

{
y−1

j , j even

yj

∏
k y

[bkj]+
k (1 + yk)

−bkj , j odd
(3.2)

The proof of this lemma is a simple calculation using the description of quiver
mutations above. Note that the term bipartite, as used in the statement of the
lemma, simply means that each arc in the quiver connects an odd vertex and an
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Cluster Algebras and Integrable Systems: Pentagram Maps

Glick’s quiver (n = 8):10 MAX GLICK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 8. The quiver associated with the exchange matrix B0 for n = 8

even vertex. No condition on the orientation of the arcs is placed. A stronger notion
would require that all arcs begin at an odd vertex and end at an even one. The
discussion of bipartite belts in [5] uses the stronger condition. As such, the results
proven there do not apply to the current context. We will, however, use much of the
same notation.

Let µeven be the compound mutation µeven = µ2n ◦ . . . ◦ µ4 ◦ µ2 and let µodd =
µ2n−1 ◦ . . .◦µ3 ◦µ1. Equations (2.3)–(2.4) and (3.1)–(3.2) suggest that α1 and α2 are
instances of µodd and µeven, respectively. Indeed, let B0 be the matrix with entries

b0
ij =





(−1)j, i− j ≡ ±1 (mod 2n)

(−1)j+1, i− j ≡ ±3 (mod 2n)

0, otherwise

The corresponding quiver in the case n = 8 is shown in Figure 8.

Proposition 3.3. µeven(y, B0) = (α2(y),−B0) and µodd(y,−B0) = (α1(y), B0).

Proof. First of all, B0 is skew-symmetric and b0
i,j = 0 for i, j of equal parity. In the

quiver associated to B0, the number of length 2 paths from i to j is 1 if |i−j| ∈ {2, 4}
and 0 otherwise. Therefore, Lemma 3.2 applies to B0 and µeven is given by (3.2).

Both α2 and µeven invert the yj for j even. Now suppose j is odd. Then α2 has
the effect of multiplying yj by

yj−3yj+3
(1 + yj−1)(1 + yj+1)

(1 + yj−3)(1 + yj+3)
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Cluster Algebras and Integrable Systems: Pentagram Maps

GSTV, ERA 19 (2012), 1-17:

Generalize Glick’s quiver:
consider the homogeneous bipartite graph Qk,n where r = [k/2]− 1, and
r ′ = r for k even and r ′ = r + 1 for k odd (each vertex is 4-valent):

pi

qi!r!1 qi!r qi+r’ qi+r’+1
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Cluster Algebras and Integrable Systems: Pentagram Maps

Dynamics: mutations on all p-vertices, followed by swapping p and q; this
is the map T k :

q∗i =
1

pi
, p∗i = qi

(1 + pi−r−1)(1 + pi+r+1)pi−r pi+r

(1 + pi−r )(1 + pi+r )
, k even,

q∗i =
1

pi−1
, p∗i = qi

(1 + pi−r−2)(1 + pi+r+1)pi−r−1pi+r

(1 + pi−r−1)(1 + pi+r )
, k odd.

(The Pentagram Map corresponds to T 3).
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Cluster Algebras and Integrable Systems: Pentagram Maps

Properties of T k

The quiver Qk,n is preserved.

The function
∏

pi qi is invariant ( we restrict to the subspace∏
pi qi = 1.)

There is an invariant Poisson bracket: the variables Poisson commute,
unless they are connected by an arrow: {pi , qj} = ±pi qj (depending
on the direction).

The Poisson bracket is compatible with the cluster algebra determined
by the quiver.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Goal: to reconstruct the x , y-dynamics and to interpret it
geometrically.

Key: the quiver Qk,n can be drawn on a torus

Main tool: directed network dual to the quiver Qk,n :

−β

2

b1

α−β
α

b

α−β

α−β

The Poisson bracket above can be realized as a universal Poisson bracket
for the dual network.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Weighted directed networks on the cylinder and the torus

Example:

1

2

3

3

1

2

x

y
!

Two kinds of vertices, white and black.

Convention: an edge weight is 1, if not specified.

The cut is used to introduce a spectral parameter λ.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Boundary measurements :

The network

1

2

3

3

1

2

x

y
!

corresponds to the matrix




0 x x + y
λ 0 0
0 1 1


 .

Concatenation of networks 7→ product of matrices.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Gauge group: at a vertex, multiply the weights of the incoming edges and
divide the weights of the outgoing ones by the same function. Leaves the
boundary measurements intact.

Face weights: the product of edge weights±1 over the boundary (±1
depends on orientation). The boundary measurement map to matrix
functions factorizes through the space of face weights. (They will be
identified with the p, q-coordinates).

Poisson bracket (6-parameter): {xi , xj} = cij xi xj , i 6= j ∈ {1, 2, 3}

1 1
2 2

3 3

x
x

x

x
x

x
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boundary measurements intact.

Face weights: the product of edge weights±1 over the boundary (±1
depends on orientation). The boundary measurement map to matrix
functions factorizes through the space of face weights. (They will be
identified with the p, q-coordinates).
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Cluster Algebras and Integrable Systems: Pentagram Maps

Properties of the boundary measurement map

1 Images of the boundary measurement map are rational matrix-valued
functions M(λ)

2 Universal Poisson brackets on edge weights lead to trigonometric
R-matrix brackets in the case when sources and sinks are located at
opposite ends of a cylinder:

{M(λ) ⊗, M(µ)} = [R(λ, µ),M(λ)⊗M(µ)]
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Cluster Algebras and Integrable Systems: Pentagram Maps

Postnikov moves (do not change the boundary measurements):

y
1 w2

w4

w1 w2

w3 w4

w1 w2

w3

w4

w3

w4
w2w111+

w2w111+
1

w2w111+
w1

w2w111+
w2

w1 w2

w3 w43w

w1 w2

w4

y

Type 1

Type 2

Type 3
y x

y’ x’

x

w

3w

1 1

1
1

1

1 1

1 1x

x

y

x y

y

1
x’

x

y’
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Cluster Algebras and Integrable Systems: Pentagram Maps

Consider a network whose dual graph is the quiver Qk,n.
It is drawn on the torus. Example, k = 3, n = 5:

x 1

y 1
x 2

x x 4

x 5

2

y 3

y 4

y 5y

3
p1

3

1

2

1

2

3

Convention: white vertices of the graph are on the left of oriented edges of
the dual graph.
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Cluster Algebras and Integrable Systems: Pentagram Maps

The network is made of the blocks:

pi

qi!r

qi+r’

qi!r!1 qi+r’+1

Face weights:

pi =
yi

xi
, qi =

xi+1+r

yi+r
.

This is a projection π : (x , y) 7→ (p, q) with 1-dimensional fiber.
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Cluster Algebras and Integrable Systems: Pentagram Maps

(x , y)-dynamics: mutation (Postnikov type 3 move on each p-face),

x+y
xx

y x+y

x+y
y

x+y
1

followed by the Postnikov type 1 and 2 moves on the white-white and
black-black edge (this interchanges p- and q-faces), including moving
across the vertical cut,and finally, re-calibration to restore 1s on the
appropriate edges. These moves preserve the conjugacy class of the
boundary measurement matrix.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Schematically:

commutation

1

3

2

2

3

1

3

1

2

2

1

3

3

1

2

2

3

1

mutation
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Cluster Algebras and Integrable Systems: Pentagram Maps

This results in the map Tk :

x∗i = xi−r−1
xi+r + yi+r

xi−r−1 + yi−r−1
, y∗i = yi−r

xi+r+1 + yi+r+1

xi−r + yi−r
, k even,

x∗i = xi−r−2
xi+r + yi+r

xi−r−2 + yi−r−2
, y∗i = yi−r−1

xi+r+1 + yi+r+1

xi−r−1 + yi−r−1
, k odd.

The map Tk is conjugate to the map T k : π ◦ Tk = T k ◦ π.

Relation with the pentagram map: the change of variables

xi 7→ Yi , yi 7→ −Yi Xi+1Yi+1,

identifies T3 with the pentagram map.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Complete integrability of the maps Tk

Main point: all ingredients are determined by the combinatorics of the
network !

Invariant Poisson bracket (in the “stable range” n ≥ 2k − 1) :

{xi , xi+l} = −xi xi+l , 1 ≤ l ≤ k − 2; {yi , yi+l} = −yi yi+l , 1 ≤ l ≤ k − 1;

{yi , xi+l} = −yi xi+l , 1 ≤ l ≤ k − 1; {yi , xi−l} = yi xi−l , 0 ≤ l ≤ k − 2;

the indices are cyclic.

The functions
∏

xi and
∏

yi are Casimir. If n is even and k is odd,
one has four Casimir functions:

∏

i even

xi ,
∏

i odd

xi ,
∏

i even

yi ,
∏

i odd

yi .
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Cluster Algebras and Integrable Systems: Pentagram Maps

Lax matrices, monodromy, integrals

For k ≥ 3,

Li =




0 0 0 . . . xi xi + yi

λ 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 1



,

and for k = 2,

Li =

(
λxi xi + yi

λ 1

)
.

The boundary measurement matrix is M(λ) = L1 · · · Ln. The
characteristic polynomial

det(M(λ)− z) =
∑

Iij (x , y)z iλj .

is Tk -invariant. The integrals Iij are in involution.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Zero curvature (Lax) representation:

L∗i = Pi Li+r−1P−1i+1

where Li are the Lax matrices and

Pi =




0 xi
λσi

yi+1

λσi+1
0 . . . 0 0

0 0 xi+1

σi+1

yi+2

σi+2
. . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . .

xi+k−4

σi+k−4

yi+k−3

σi+k−3
0

− 1
σi+k−2

0 0 . . . 0
xi+k−3

σi+k−3
1

1
σi+k−2

− 1
λσi+k−1

0 . . . 0 0 0

0 1
λσi+k−1

0 . . . 0 0 0




,

with σi = xi + yi .
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Cluster Algebras and Integrable Systems: Pentagram Maps

Geometric interpretation

Twisted corrugated polygons in RPk−1 and (k − 1)-diagonal maps

For k ≥ 3, let Pk,n be the space of projective equivalence classes of
generic twisted n-gons in RPk−1 (dim Pk,n = n(k − 1)).

P0
k,n ⊂ Pk,n consists of the polygons with the following property: for

every i , the vertices Vi ,Vi+1,Vi+k−1 and Vi+k span a projective
plane. These are called corrugated polygons.

The consecutive (k − 1)-diagonals of a corrugated polygon intersect.
The resulting polygon is again corrugated. One gets a pentagram-like
k − 1-diagonal map on P0

k,n (higher pentagram map). For k = 3, this
is the pentagram map.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Coordinates: lift the vertices Vi of a corrugated polygon to vectors Ṽi

in Rk so that the linear recurrence holds

Ṽi+k = yi−1Ṽi + xi Ṽi+1 + Ṽi+k−1,

where xi and yi are n-periodic sequences. These are coordinates in
P0

k,n. In these coordinates, the map is identified with Tk .

The same functions xi , yi can be defined on polygons in the projective
plane. One obtains integrals of the “deeper” diagonal maps on
twisted polygons in RP2.
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Cluster Algebras and Integrable Systems: Pentagram Maps

Case k = 2

Consider the space Sn of pairs of twisted n-gons (S−, S) in RP1 with the
same monodromy. Consider the projectively invariant projection φ to the
(x , y)-space (cross-ratios):

xi =
(Si+1 − S−i+2)(S−i − S−i+1)

(S−i − Si+1)(S−i+1 − S−i+2)

yi =
(S−i+1 − Si+1)(S−i+2 − Si+2)(S−i − S−i+1)

(S−i+1 − Si+2)(S−i − Si+1)(S−i+1 − S−i+2)
.

Then xi , yi are coordinates in Sn/PGL(2,R).
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Cluster Algebras and Integrable Systems: Pentagram Maps

Define a transformation F2(S−,S) = (S ,S+), where S+ is given by the
following local leapfrog rule: given points Si−1,S

−
i ,Si ,Si+1, the point S+

i

is obtained by the reflection of S−i in Si in the projective metric on the
segment [Si−1,Si+1]:

Si!1 SiS Si Si+1i
+ !

The projection φ conjugates F2 and T2.
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Cluster Algebras and Integrable Systems: Pentagram Maps

In formulas:

1

S+
i − Si

+
1

S−i − Si
=

1

Si+1 − Si
+

1

Si−1 − Si
,

or, equivalently,

(S+
i − Si+1)(Si − S−i )(Si − Si−1)

(S+
i − Si )(Si+1 − Si )(S−i − Si−1)

= −1,

(Toda-type equations).
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Cluster Algebras and Integrable Systems: Pentagram Maps

In CP1, a circle pattern interpretation (generalized Schramm’s pattern):

+

Si
Si+1

Si!1

Si

S!i
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Cluster Algebras and Integrable Systems: Pentagram Maps

That’s all, folks!
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