TM5 AT NOAA CMDL

WOUTER PETERS, LORI BRUHWILER, JOHN MILLER, ADAM HIRSCH, KEVIN SCHAEFER, ARLYN ANDREWS, PIETER TANS

ACTIVITIES

- TM5 projects at CMDL
- ****** Transcom Continuous
- Ensemble Data assimilation
 TM5 + CO₂ tracer version
 TM5 + CH₄ tracer version (*)
 TM5 + CO full chemistry version (*)

OUR RESOURCES

% 2 modelers

** a big computer: ???

*? Tb fast access storage

intel compiler

lots of data

TransCom continuous project

submissions coming in now

TM5 zoomed over US

Build a near real-time data assimilation system for North America to estimate regional fluxes of CO2

** North American Carbon Program

NOAA CMDL commitment to yearly updated maps of flux + uncertainty

Make a TM5 preprocessing system for NCEP meteorology

freely available, in-house

possibly nest to 20kmx20km

Model geologic sources of methane forward using GIS-derived emission distribution and estimated source strengths

stochastic approach

analyze gradients, signals at sites

compare to other sources

replace vertical diffusion scheme by simple 'mixed layer model'

** assumes well-mixed below PBL height (h), concentration controlled by surface and entrainment flux and dh/dt

Diffusion does not work for nonconvective PBL's anyway...?

TRANSCOM CONTINUOUS

Designed to compare models-to-models and models-to-observations at fine time scales

Continuous recording of several tracers, and meteorological parameters for the year 2002 (2003 to be added)

For 273 surface sites, and 89 surface-500 hPa sites

TRACERS

Tracer name	Description	Flux time resolution
SiB	SiB biosphere model fluxes for 2002	hourly
SiB_day	SiB model daily average fluxes	daily
SiB_mon	SiB model monthly average fluxes	monthly
CASA	CASA biosphere fluxes with diurnal cycle	3 hourly
CASA_mon	CASA monthly fluxes	monthly
SF6	SF6 emissions	constant
radon	Radon emissions	constant
fossil98	Fossil emissions for 1998	constant
Taka02	Takahashi ocean fluxes, 2002 compilation	monthly

WHAT'S THERE

CMDL, TM5 @ (6x4), (3x2), (1x1)x25, ECMWF
MPI-Jena, <u>TM3@1.25x1.25x?</u>, NCEP
AIST, <u>STAG @ 1.25x1.25x60</u>, ECMWF
JMA, CDTM @ 2.5x2.5x32, JMA analysis
LSCE, LMDZ @ ??

* To come: Denning, NASA, Fan, CSIRO, ...

A first look at the results...

Latitude

A first look at the results...

INVERSE MODELING

Matrix solutions to linear problem

Adjoint + 4d-var to minimize cost function

Kalman filter sliding window for efficiencyEnsemble Kalman Filter

DATA ASSIMILATION: 2 STEPS

1) Forecast

take old state (fluxes, weather, CO2 columns,...)

combine with a model of state propagation

% forecast new state

sample forecast state

combine with observations

calculate optimal state

ENSEMBLE DA

Do not describe the PDF of the fluxes by its mean x and its covariance P, but create an ensemble of fluxes to reflect that same information:

ENSEMBLE DA

Predict concentrations for all ensemble members that span the prior PDF

Optimize across the ensemble to find optimum fluxes

Optimized ensemble represents posterior
PDF

ENSEMBLE DA (+)

no base functions needed

no adjoint needed

* only forward model runs

** weakly non-linear problems possible** fully parallel

ENSEMBLE DA (-)

Success depends on statistics of ensemble Statistics depend on structure of P P depends on model and assumptions Base functions replaced by N parallel runs Posterior P has only N nonzero eigenvalues

TM5 VERSION

- Massive parallel with 500 tracers on 50-120 processors, transport only
- Two new modules to coordinate assimilation code/ TM5 (subroutine)
- Model loops over one week timesteps, with several weeks of runtime in each loop
- # All processors read/write, savefiles as binaries

FLOW CHART

 $y^{\circ}(t+12) y^{\circ}(t+13) y^{\circ}(t+14)$

PSEUDO DATA TESTS

Global fluxes @ 9°×6° estimated each week # 1200x52 = 62.400 unknowns # from year 2000 NOAA CMDL flask network (no towers) % ~4800 observations Correlation structure imposed on solution % No 'bottom-up' prior fluxes, M=I Covariances prescribed, not propagated

PSEUDO DATA TESTS

PSEUDO DATA TESTS

- Sensemble data assimilation offers an alternative way to optimize fluxes
- Large flexibility in # parameters, # and type of observations
- Sefficient algorithm, no base functions needed, partial covariances returned
- Lots of CPU needed, more 'engineering' choices to be explored

Peters, W., J.B. Miller, J. Whitaker, A.S. Denning, A. Hirsch, M.C. Krol, D. Zupanski, L. Bruhwiler, and P.P. Tans,
"An ensemble data assimilation system to estimate CO₂ surface fluxes from atmospheric trace gas observations" J. Geophys. Res., submitted, 2005. * Terrestrial CO₂ fluxes vary at temporal and spatial scales that are beyond our capacity to observe from the atmosphere

The mean CO₂ flux can only be observed after substantial integration of the signal

Solution Solution

A large part of the spatial variability of CO₂ fluxes is due to the underlying biome type, and its characteristics

A large part of the temporal variability of CO₂ fluxes is due to the effect of sunlight, temperature, soil moisture,...

GERBIG ET AL, 2003 / HARVARD / CSU APPROACH:

Solve for the (stable, predictable) response of an (known, observable) ecosystem to (variable, known) forcing, to create fluxes that are:

Resolved at appropriate scales

Optimized with observations

FROM BIOSPHERE TO FLUXES

Flux parameterization (Gerbig)

% T, q, short wave radiation

\$\$ simple biosphere model (VPRM)

full biosphere model (SiB, CASA)
GPP, R formulations, reservoirs

THE ECOSYSTEM REGIONS

THE ECOSYSTEM REGIONS

DATA ASSIMILATION

- Prior flux = VPRM model driven by offline weather in TM5 as a function of 2 parameters for each ecosystem
- ** Posterior flux = VPRM model + TM5 weather +2 optimized parameter values for each ecosystem
- Ocean fluxes are now 22 regions and prescribed, but will become spatially explicit and a function of pCO2, SeaWifs, ...,?

EXAMPLE: SCALING OF SIB NPP

JUNE 24-27 HOURLY FLUXES

