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Scientific Relevance 

• What is biomass burning?

• Locating BB from space

• BB      trace gas emissions?



Objectives
Estimate the source and variability of 

Biomass burning CO
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How-to-get-there?

Construct 
background estimate 
from inventory from 

literature

Emission 
Budget 

Yearly Emissions 
(Tg CO)

Uncertainty

Fossil+Biofuel 571 35%-60%

Tropical Fires 170 70%

Savanna Fires 268 70%

Extratropical 
Fires 29 70%

Biogenic 160 60%

Oceans 20 -

Oxidation 
NMVOCs 734 60%

Oxidation 
Methane 796 -

TOTAL 2748 -
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• Surface network observations

• Satellite measurements
★ SCIAMACHY
★ MOPITT

4D-VAR Data Assimilation
background estimate + observations = analysis

How-to-get-there?
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Minimization routine

• Based on Lanczos algorithm for 
approximating the leading eigenpairs of 
Hessian of cost function J.

• Simultaneously minimization of J and 
estimation of leading eigenpairs of Hessian.
• A posteriori error covariance matrix Aa 
derived from: Aa ≈

M∑

k=0

1
λk

vkvT
k

Conjugate Gradient method (CONGRAD):



Toy model (1)
• 1D domain with 10 cells
• Initial tracer concentration
• Emission in a predefined cell
• constant windspeed from left to right



Toy model (2)

• Underlying equation of model is
   the advection-emission equation:

• Use finite volume method with 
   upwind discretization of fluxes
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Toy model (2)

• Underlying equation of model is
   the advection-emission equation:

• Use finite volume method with 
   upwind discretization of fluxes

• Simulation movie!
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Toy model (3)

Question: Assume that initial tracer 
concentration distribution and the emissions 

are unknown. Using the model and observations 
in an (inverse) data assimilation scheme, how 
good is the approximation of the initial state?

We use the BLUE analysis as data assimilation method.
This is equivalent to minimization of cost function J.



Choices 

• # measurement times

• # measurement stations

• background estimate xb

• error covariance matrices B and R



Choosing background

concentration profile equal to initial,
background emission is placed in cell 5



Many stations & observations
• # measurement times = 101

• # measurement stations = 10

• backgr. conc. error = 100%
• backgr. emis. error = 200%

• R diag. matrix, entries = 0.1
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Fewer stations/times

• Stations in cells: 1,4,6,9

• # measurement times = 51



Fewer stations/times

• Stations in cells: 1,4,6,9

• # measurement times = 51

The initial concentrations and emissions will be 
less constrained by the observations, hence, 
we expect that the background estimate is 

not completely neglected anymore 
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Problems with CONGRAD
• Not always possible to achieve preset
   reduction in gradient norm -> crash
   Especially if only a few observation stations
   are used.

• CONGRAD should be equivalent to BLUE 
   analysis but is not if a small amount of 
   observations is used. 



Conclusion
• CONGRAD equivalent to BLUE analysis if 
   many stations and observations are used

• If a few stations are used CONGRAD
   breaks down/does not reach tolerance

• If we use many stations but only a few 
   measurement times, CONGRAD yields 
   another solution than BLUE analysis.



Future research

Inversion of CO emissions using:

• Ground stations observations and satellite
   measurements

• TM5-model with CONGRAD minimization

• A priori estimate from inventory from 
   literature


