Inverse modeling of CO emissions

With a focus on biomass burning
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Project Goal:

Study the magnitude, trend and variability in biomass
burning.



Fire emitted species: CO2, CH4 (greenhouse gases)
CO, NOx, NMVOC:s, aerosols

Boreal forest fire

Savannah fire
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Why do we use CO as a tracen?

CO: 2 month lifetime meaning

® concentration gradient due to emissions

* intercontinental transport of CO

MOPITT averaged CO total column for Sep 2004
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CO: sources & sinks

e Fossil fuel & biofuel combustion

* Biomass burning 2D emissions

Annual emissions = 1000-1500 Tg CO

e (Oxidation of methane o
e Oxidation of NMVOCs 3D emissions

Annual emissions = 1000-1500 Tg CO

Oxidation of CO by OH main sink: 90%
Additional 10% by dry deposition



How do we compute emissions of CO?

Bottom-up:
Using burnt area, fuel loads, emission factors and upscaling

Large discrepancies

Top-down:
Using atmospheric measurements to constrain emissions



Top-down approach

“Adjust emissions in such a way that the misfit
between the model and observations is minimal”



Top-down approach

“Adjust emissions in such a way that the misfit
between the model and observations is minimal”

First guess emissions:
from a bottom-up inventory



Top-down approach

“Adjust emissions in such a way that the misfit
between the model and observations is minimal”

Chemistry Transport Model (CTM):
T™M5
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surface sites, ship, aircraft, satellite



Top-down approach

“Adjust emissions in such a way that the misfit
between the model and observations is minimal”

Atmospheric measurements:
surface sites, ship, aircraft, satellite

Find the vector x that minimizes J:

J(x) = (y —Hx) 'R™'(y — Hx)



Problem of not enough measurements...

Far less measurements available than variables to optimize:
Problem is ill-conditioned.
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How does it work in practice?

1 1

T—1 T—1
j(x):§(x—xb) B (X—Xb)—|—§(y—HX) R (y — Hx)
X = unknown emissions y = observations
Xp = prior emissions H =TMS5 model
B = a priori error covariance matrix R = observation error covariance matrix

* Run the model with prior emissions (Hxy) and
compare the output with the observations y.
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How does it work in practice?
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j(x):§(x—xb) B (X—Xb)—|—§(y—HX) R~ (y — Hx)
X = unknown emissions y = observations
Xp = prior emissions H =TMS5 model
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* Validate results: compare optimized emissions
with a set of independent observations.



Run the model with prior emissions (Hxp) and
compare the output with the observations y.



Prior emissions:

o Seasonality in Carbon monoxide surface emissions

B anthropogenic Direct sources:

I biomass burning

eFossil fuel/biofuel

combustion (anthropogenic)
EDGARv3.2
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Forward simulation
2004-2006
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Optimize emissions iteratively: start with x=xp
change x to find minimum of J(x)
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Monthly mean increment in anthropogenic emissions for September and October 2004
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Monthly mean increment in biomass burning emissions for September and October 2004
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Uncertainty reduction:VVhat about the errors!?
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Uncertainty reduction
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Uncertainty reduction
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Validate results: compare optimized emissions with
a set of independent observations



A priori difference in CO total column for MOPITT and TM5
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A priori difference in CO total column for MOPITT and TM5

Global mean difference
decreases from 22% to 8%,
large local differences
remain.
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CONCLUSIONS

TM5-CO version nearly complete, CO from NMVOC
to be implemented.

Forward model agrees well with observations, too
low on NH up to 25%.

Inversion using station data improve agreement
between observations and the model.

Validation with MOPITT V4 shows that the optimized
emissions are better in line, but large local differences
remain.



N eXtooo

Include CO source from NMVOC
oxidation.

Apply a vertical distribution of biomass
burning emissions.

Optimize emissions for | or 2 years.

Use satellite data (MOPITT/SCIAMACHY)
to constrain emissions more.



