OH derived from MCF

An update: TM meeting dec. 2009, Wageningen

Idea

- Methyl Chloroform (MCF) sources dropped due to Montreal..
- Budget MCF now dominated by OHdepletion
- Good test for OH-fields in global models (since 1998)

OH optimization

OH optimization

CGO_NOA_000

OH-Spivakovsky, scaled by 0.92 OD = operational data, El = Era Interim

Interim conclusions

- OH pretty stable in 2000-2006
- Year-to-year variations $\approx 2 \%$
- Settings 4DVAR OH optimization crucial (noisy results)
- Doubts about correct implementation (convergence problems)

Remaining Questions

- What caused the inferred OH swings in the 1990s?
- Mean OH 1990s vs. Mean OH 2000s?
- How to apply 4D-VAR to OH in an optimal way?
- Try 1990-2010 optimisation with ERAinterim...

Box model

- monthly GAGE-AGAGE data
- construct a global average mixing ratio
- 30N-90N: California + Ireland (25%)
- 0-30N: Barbados (25%)
- 0-30S: Samoa (25\%)
- 90S-30S: Tasmania (25\%)

Global MCF concentration

Box model

Simplest model

- Global emissions
- Loss by OH
- Loss in the stratosphere
- Loss by ocean uptake
- $\mathrm{dMCF} / \mathrm{dt}=\mathrm{E}_{\mathrm{t}}-\mathrm{MCF}^{*}\left(\mathrm{kOH}+\mathrm{k}_{\mathrm{s}}+\mathrm{k}_{\mathrm{o}}\right)$

Emissions

Hand-optimized model

Set-up inverse model

- Define state-vector x (initial condition, yearly emissions, yearly OH)
- Cost function $\mathrm{J}(\mathbf{x})=(\mathbf{y}-H(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{y}-H(\mathbf{x}))$
- Set-up linearized (\mathbf{H}) and adjoint model $\left(\mathbf{H}^{T}\right)$ to calculate $\mathrm{dJ}_{\mathrm{i}} / \mathrm{dx} \mathrm{x}_{\mathrm{i}}=\mathbf{H}^{T} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{H x})$
- run adjoint model and feed in $\mathbf{R}^{-1}\left(y_{i}-\mathbf{H x}\right)$
- Note: H is a non-linear model when OH is in state vector \mathbf{x}

Time-evolution J(x)

Tangent linear model

Emission: TL model trivial
$x=x+e$
$d x=d x+d e$
OH : optimise for foh makes system non-linear:
$x=x \cdot\left(1-f_{o h} l_{o h}\right)$
$d x=d x \cdot\left(1-f_{o h} l_{o h}\right)-x \cdot d f_{o h} l_{o h}$

Adjoint model emission

$$
\begin{aligned}
& \binom{d x}{d e}^{n+1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{d x}{d e}^{n} \\
& \binom{a d x}{a d e}^{n}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{a d x}{a d e}^{n+1} \\
& a d x=a d x \\
& a d e=a d e+a d x
\end{aligned}
$$

Adjoint model OH

$$
\begin{aligned}
& \binom{d x}{d f_{o h}}^{n+1}=\left(\begin{array}{cc}
1-f_{o h} l_{o h} & -x \cdot l_{o h} \\
0 & 1
\end{array}\right)\binom{d x}{d f_{o h}}^{n} \\
& \binom{a d x}{a d f_{o h}}^{n}=\left(\begin{array}{cc}
1-f_{o h} l_{o h} & 0 \\
-x \cdot l_{o h} & 1
\end{array}\right)\binom{a d x}{a d f_{o h}}^{n+1} \\
& a d x=a d x \cdot\left(1-f_{o h} l_{o h}\right) \\
& a d f o h=a d f o h-a d x \cdot x \cdot l_{o h}
\end{aligned}
$$

Test:

