Ongoing and future TM modeling activities at ECPL

S. Myriokefalitakis, N. Daskalakis and M. Kanakidou^{*}

Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003, P.O. Box 2208, Heraklion, Greece

TM4-ECPL Current Updates

EMISSIONS

4 Annual anthropogenic emissions (NMVOC, NO_x , CO, SO₂, NH₃, OC and BC) from CIRCE project (Doering et al., 2009)

4 Biogenic emissions from the POET database (Granier et al., 2005) for 2000.

4 Biomass burning emissions from the GFED v2 (Van der Werf et al., 2006)

4 Marine emissions: online calculation (POA, hydrocarbons and sea-salt particles; see Myriokefalitakis et al., 2010 and DMS by Spiro et al.,1992)

Lust emissions from AEROCOM (Dentener et al., 2006) updated up to the year 2010 (E. Vignatti, 2011, pers. com.)

METEOROLOGY & RESOLUTION

4 TM4-ECPL is now coupled with TM5 meteo-modules able to read meteorology in 1°x1° in latitude and longitude and 60 vertical hybrid layers from ECMWF (Arjo Segers, pers. com.)

TM4-ECPL is driven by ERA-Interim meteorology for the years 2000-2010
TM4-ECPL runs in two different resolutions;

- 2° lat x 3° lon x 25/34 vertical hybrid layers up to 0.1 hPa, time-step 30 min
- 4° lat x 6° lon x 34 vertical hybrid layers up to 0.1 hPa), time-step 1 hour.

Anthropogenic Global Land Emission Scenarios

*Linear projection of 2005 CIRCE emissions based on 2010 (BAU) emission scenario

<u>Part A:</u> The importance of the longrange transport (LRT) for the Eastern Mediterranean (EM) air pollution

DOMAIN of the study – Eastern Mediterranean

Sensitivity Simulations

Simulation	Description						
S0	The base case simulation in 6° in longitude x 4° in latitude						
	resolution and in 34 vertical layers from surface up to 0.1hPa. The						
	model takes into account all anthropogenic, biogenic and natural						
	emissions.						
S1	As for S0, but neglecting the anthropogenic emissions in the						
	Eastern Mediterranean domain						
S2	As for S1, but also neglecting the biomass burning emissions in						
	the Eastern Mediterranean domain						
S 3	As for S2, but also neglecting the biogenic contribution in the						
	Eastern Mediterranean domain						
S4	As for S0, but taking into account anthropogenic emission of the						
	year 2025 (CIRCE; BAU scenario)						

Eastern Mediterranean contribution to the Global Budget

S0 - GL	EMIS. (Tg/yr)	NET Chem. (Tg/yr)	BURDEN (Tg)	DD (Tg/yr)	WD (Tg/yr)	SED. (Tg/yr)	ST. FLUX (Tg/yr)
O ₃	0	-2181	3107	756	0	0	2921
NOy	53	10	1	10	0	0	0
SS	6527	0	5	994	556	4979	0
DU	1090	0	17	367	76	650	0
PM-ss-du	67	131	3	37	161	0	0

S0 – EM / GL	EMIS.	NET Chem.	BURDEN	DD	WD	SED.	ST. FLUX
O ₃		0%	2%	4%			2%
NOy	4%	6%	3%	5%	1%		
SS	0%		0%	0%	0%	0%	
DU	4%		3%	3%	1%	4%	
PM-ss-du	1%	3%	2%	3%	1%	0%	

O₃ Schematic Budget in Eastern Mediterranean – SO

Burdens (Tg) are averages of monthly samples, residence times (days) are burdens divided by total sinks and all budget terms and fluxes (Tg yr⁻¹) are annual totals.

NO_v Schematic Budget in Eastern Mediterranean – SO

Burdens (Tg) are averages of monthly samples, residence times (days) are burdens divided by total sinks and all budget terms and fluxes (Tg yr⁻¹) are annual totals.

PM_{SS-DU} Schematic Budget in Eastern Mediterranean – S0

Burdens (Tg) are averages of monthly samples, residence times (days) are burdens divided by total sinks and all budget terms and fluxes (Tg yr⁻¹) are annual totals.

atitude (

ES vs TM4ECPL

O3 (ppbv), Surface, Annual Mean, 2008, S0

44N

PM10 (ug/m3), Surface, Annual Mean, 2008, S0

PM10 S0 (base case Surface concentration (µg m⁻³) latitude (deg) average 0 μg m 24N 18E42E longitude (deg) 0 17 34 51 68 85 PM-SS-DU fraction (%), Surface, Annual Mean, 2008, (S1-S0)/S0 44NSS-DU latitude (deg) average dif. -62% 24N 18E42E longitude (deg) -85 -68 -51 -34 -17 0 PM-SS-DU fraction (%), Surface, Annual Mean, 2008, (S3-S0)/S0 44N S3 (no EM emis) PM-SS-DU latitude (deg) latitude (deg) average dif. -67% 24N 18E 42E longitude (deg)

N

and

PM (without SS

-85

-68

-51

-34

-17

average dif. +9% 24N 181

I longitude (deg)							
0	10	20	30	40	50		

<u>Part B:</u> Observed and simulated ozone over Europe the past decade

Austria I **Ozone de-seasonalized trends over Europe**

France **Ozone de-seasonalized trends over Europe**

Ozone de-seasonalized trends over Europe - Italy

Part C: Ongoing and future activities at ECPL

Ongoing activities at ECPL (contact Maria K)

1- AEROCOM OC

2- PEGASOS (HOX recycling, SOA, multiphase chemistry, hindcasts experiments, model evaluation)

3- ECLIPSE (uncertainties related to short lived species simulation, model evaluation of seasonal behaviour, lifetime s and emissions distributions)

4- Atmospheric deposition modeling