TM6: status as of November 2011 "the first results"

P. Le Sager

Royal Netherlands Meteorological Institute (KNMI)
The Netherlands

2011-11-29 - TM5 meeting - Wageningen

Outline

- What's up with TM5?
- TM6 idea & development
- Processors topology
- Status

What's up with TM5?

Outline

- What's up with TM5?
- 2 TM6 idea & development
- Processors topology
- Status

Scalability issue

Scalability issue

Limits

- EC-Earth
 - IFS and NEMO scale way better than TM5
 - a decade or two, no ensemble run
- Hi-Res slower than real time!

Ways to better scalability

- minimize sequential parts
- minimize communication
- load balancing

What's up with TM5?

MPI implementation in TM5

ARRAYS(Ion, lat, levels, tracers) decomposed along levels **AND** tracers (**separately**)

What's up with TM5?

MPI implementation in TM5

ARRAYS(lon, lat, levels, tracers) decomposed along levels **AND** tracers (**separately**)

THEN

- processor starvation > 42
- large communication (switch decomposition)
- large memory requirements
- code complexity (which_par, tracerloc, Imloc, tracerorder)

So, where is the bottleneck? MPI profiling

2-days sim, full-chemistry @ 3x2, 4 MPI tasks

task id	comm(s)	elapsed(s)
0	16.12	470.73
3	259.99	470.73
2	260.47	470.73
1	263.86	470.73

So, where is the bottleneck? MPI profiling

2-days sim, full-chemistry @ 3x2, 4 MPI tasks

task id	comm(s)	elapsed(s)
0	16.12	470.73
3	259.99	470.73
2	260.47	470.73
1	263.86	470.73

MPI communication alone = 55% runtime!

MPI profiling (part #2) - Data for MPI rank 3 of 4

MPI Routine	#calls	avg. bytes	time(sec)
MPI_Comm_size	1	0.0	0.000
MPI_Comm_rank	11	0.0	0.000
MPI_Bcast	5537	289246.1	235.000
MPI_Barrier	1080	0.0	2.430
MPI_Gatherv	19	5286110.3	0.460
MPI_Scatterv	61	777600.0	0.012
MPI_Allreduce	321	1206723.9	6.985
MPI_Alltoallv	976	5711440.0	14.740

MPI profiling (part #2) - Data for MPI rank 3 of 4

MPI Routine	#calls	avg. bytes	time(sec)
MPI_Comm_size	1	0.0	0.000
MPI_Comm_rank	11	0.0	0.000
MPI_Bcast	5537	289246.1	235.000
MPI_Barrier	1080	0.0	2.430
MPI_Gatherv	19	5286110.3	0.460
MPI_Scatterv	61	777600.0	0.012
MPI_Allreduce	321	1206723.9	6.985
MPI_Alltoallv	976	5711440.0	14.740

MPI_Bcast alone = 50% runtime!

MPI profiling (part #3) - MPI_Bcast details

#calls	avg. bytes	time(sec)
363	2776633.8	194.825
382	518400.0	8.099
4507	86432.3	31.054
247	24480.0	1.295
2	4096.0	0.045
1	1320.0	0.000
2	720.0	0.006
2	256.0	0.000
3	120.0	0.000
1	56.0	0.000
3	24.0	0.000
3	8.0	0.000
21	4.0	0.039

Lots of..

• call
• data

Outline

- 1 What's up with TM5?
- TM6 idea & development
- Processors topology
- Status

TM6 idea & development

Revised domain decomposition

Revised domain decomposition

	TM5	TM6
processor starvation	42	10800 (3x2)
communication	swapping	halo update
memory	global arr.	shrinking arr.
code complexity	aware of //-ization	transparent to //-ization

Strategies to set up 2D topology

coarrays (Fortran 2008)

- extension for parallel processing : array(*)[*]
- growing implementation (CRAY, g95, intel, gfortran)
- BUT no collective communication

Strategies to set up 2D topology

coarrays (Fortran 2008)

- extension for parallel processing : array(*)[*]
- growing implementation (CRAY, g95, intel, gfortran)
- BUT no collective communication

ESMF (Earth System Modeling Framework)

- overhead
- worth for modular coupling (but not used in EC-Earth)

TM6 idea & development

Strategies to set up 2D topology

coarrays (Fortran 2008)

- extension for parallel processing : array(*)[*]
- growing implementation (CRAY, g95, intel, gfortran)
- BUT no collective communication

ESMF (Earth System Modeling Framework)

- overhead
- worth for modular coupling (but not used in EC-Earth)

classic MPI

- with MPI CART xxx tools : create, coords, get, ...
- or without [elected]

Development choices

- 42 tracers of chem/base
- up-to-date trunk only (pycasso only)
- no zoom (yet)
- new rc keys : par.nx & par.ny (par.nx * par.ny = par.ntask)
- 3 grids:
 - global one-cell
 - local grid (6x4, 3x2, ...)
 - extra global local 1x1

TDD: Test Driven Development

- test = **bitwise** agreement b/w TM5 & TM6 final restart file
- fully automatic (stress free!)

```
: c1a[1048] ~/TM5 > tm5 test.pv tm6.rc tm5.rc
  : Compare tm6.rc and tm5.rc
5 : submitting run for tm6.rc... submit ok
   : submitting run for tm5.rc... submit ok
7 : checking run for tm6.rc
        checking last jobstep: /tmp/tm6/run/tm6_001.rc
Restart converted to netCDF-3
11 : comparing:
        /tmp/tm6/restart/TM5 restart 20060101 0200 glb600x400.nc3
13 :
        /tmp/standard/restart/TM5_restart_20060101_0200_glb600x400.n
15 : SUCCESS
```

refactoring

- improve nomenclature-zoology (trace0, trace1, ...)
- improve documentation
- remove non-pycasso code
- remove obsolete code (e.g. geomtryh)

Processors topology

Outline

- 1 What's up with TM5?
- 2 TM6 idea & development
- Processors topology
- Status

distributed grid object

END TYPE DIST GRID

```
TYPE DIST GRID
   ! parameters for global domain
   integer :: im world ! number of longitudes
   integer :: jm_world
                           ! number of latitudes
   ! parameters for local domain
   integer :: i strt
                             ! begin local domain longitude index
   integer :: i_stop
                             ! end local domain longitude index
   integer :: i strt
                            ! begin local domain latitude index
   integer :: j stop
                             ! end local domain latitude index
  type(TllGridInfo) :: lli
                               ! local Lat-Lon grid info
   type(TllGridInfo) :: glbl_lli ! global Lat-Lon grid info
  type(TllGridInfo) :: lli z
                                ! local zonal grid info
   logical :: has south pole ! south pole is in local domain
   logical :: has_north_pole
                             ! north pole is in local domain
```

Processors topology

Local Indices

j_start, ..., j_stop = 1, ..., n

• if global coordinate needed : process-dependent offset

j_start, ..., j_stop = global indices [elected]

- given value is easily understood independent of process
- debugging made easy
- easy I/O when interface with "start" and "stride"

Price = must specify lower bounds

procedure dummy variables

```
! before
  real, intent(inout) :: arr(:,:,:)
3 ! now
  real, intent(inout) :: arr(dgrid%i_start:,dgrid%j_start:,:)
local arrays
  ! before, automatic
2 real :: arr(im)
  ! now, still automatic
4 real :: arr(dgrid%i_start:dgrid%j_stop)
  ! or allocatable
6 real, allocatable :: arr(:,:,:)
always be careful with pointers
    => sp_dat%data(i1:i2) ! indices= 1,...,i2-i1+1
    => sp_dat%data(:) ! indices=i1,...,i2
```

Outline

- 1 What's up with TM5?
- 2 TM6 idea & development
- Processors topology
- Status

Decomposition

Module with

- domains definition and distributed grid object
- main communication methods
 - point-to-point : halo_update
 - collective : gather, scatter
 - 2D, 3D, 4D
 - any halo

Restart

OPTION	istart	TM6	TESTED	COMMENT
zeroed fields	1	Χ		
"random" values	2	Χ		new set of values
read save file	30	Χ		read HDF4 on 1 proc
read save file	31	Χ	X(*)	read HDF4 on 1 proc
read restart	33	Χ	X	parallel I/O
read "saveoldfile"	4			
read mmix	5			
user_input	9	Χ		dummy
write restart		Χ	Χ	parallel I/O
write save file		Χ		

- none deals with tendencies yet
- (*) overwrite with TM4 fields implemented but not tested

Meteo

- declaration / allocation
- reading on root, then scatter
 - work with all current formats
- I/O more and more of a bottle neck

Other Processes

- output_mmix : implemented, tested (-O2 instead of -O3)
- convection : implemented, tested

THE FIRST RESULT - Runtime for "RUN step" (convection, accum. mmix)

w/ 12 procs : 4.5 times FASTER!

Gain from 4 to 6 procs: 8% (TM5), 30% (TM6)

NEXT

- TM6-ize remaining of the code (inc. EC-Earth)
- load balancing: issues occur mostly due to complicated geometry (poles, day/night?)

I/O... more and more the bottleneck

- parallel : optimal number of PEs (too many => large overhead)
- non-parallel: move the burden to mpi communication
- solution : using MPI I/O (full exploited : datatype & data sieving)
- hardware issues (file system)