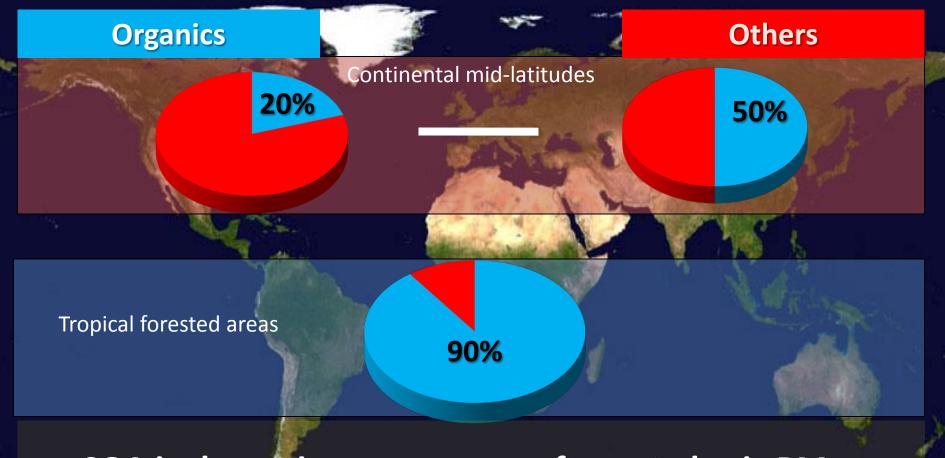


Aqueous-Phase Chemistry in TM4-ECPL:

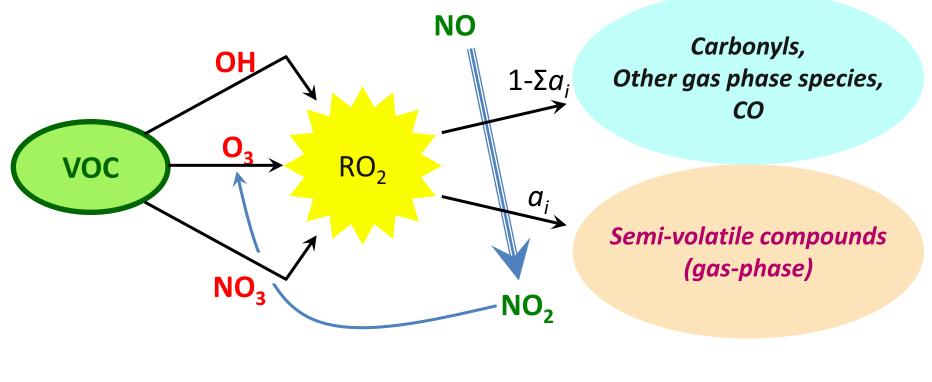
SOA Formation via Cloud Processes

Stelios Myriokefalitakis¹ Kostas Tsigaridis^{2,3} Maria Kanakidou¹


¹Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece

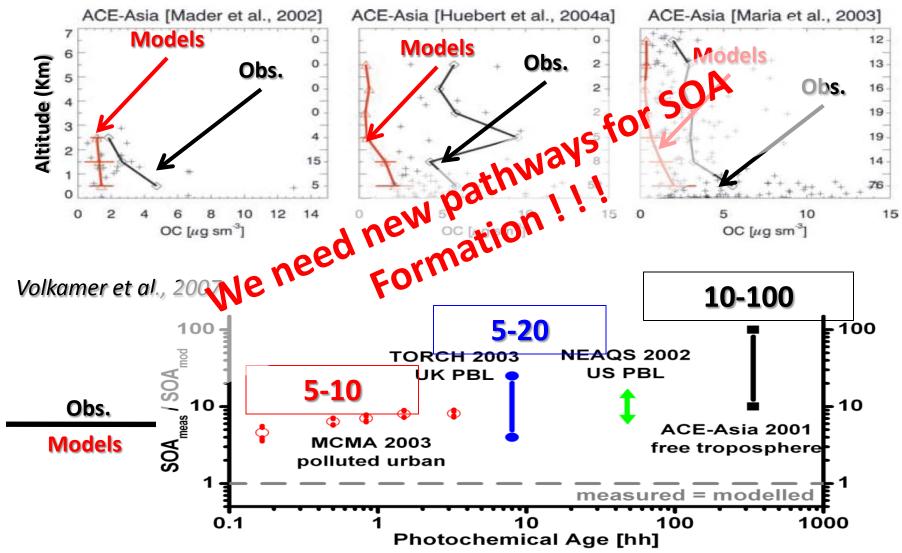
²NASA Goddard Institute for Space Studies, New York, NY 10025, USA ³Center for Climate Systems Research, Columbia University, New York, NY 10025, USA

stelios@chemistry.uoc.gr


Aerosols in the Atmosphere

SOA is the major component of atmospheric PM_{2.5}

Kanakidou et al., 2005


Partitioning Theory -The Traditional view of SOA formation-

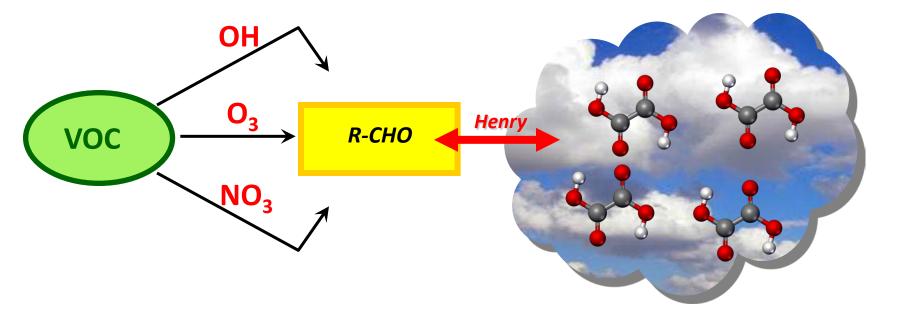
Traditional view of SOA formation in Models fails to fully explain atmospheric observations

Heald et al., 2005

Closing the Gap Between Models and Observations

> Low volatile products can be <u>formed through aqueous reactions</u> in clouds, fogs and wet aerosols (Blando and Turpin, 2000; Glencser and Varga, 2005; Ervens et al., 2004; Carlton et al., 2006; Volkamer et al., 2007, Lim et al., 2010, Ervens ad Volkamer, 2010)

→ Water soluble gases react (e.g., via photochemistry, acid catalysis, and with inorganic constituents) in the aqueous phase <u>forming organic acids</u>, oligomers, and organosulfates (*Carlton et al., 2006; Guzman et al., 2006; Perri et al., 2010*)


Lower volatility products are retained, at least in part, in the <u>particle phase</u> <u>after water evaporation</u> (Loeffler et al., 2006; El Haddad et al., 2009)

>SOA formed through atmospheric aqueous chemistry is a <u>strong candidate for</u> <u>closing the gap</u> between the measured organic aerosol and atmospheric model predictions in part because it is formed from different precursors

প্র 🖗 SOA formation through aqueous chemistry

- 1. VOC photo-oxidation in the gas-phase
- 2. Production of water-soluble organic compounds in the gas-phase (e.g. aldehydes)
- 3. Phase transfer between the gas and the aqueous phase
- 4. Production of low volatile compounds in the aqueous-phase (e.g. oxalic acid)
- 5. Upon cloud evaporation new organic particulate matter is formed

NURONMENTAL

FCPL

	Reactions	Α	E/R	Ref.
	Reactions	(mol ⁻ lt ¹ s ⁻¹)	(К)	Rei.
H ₂ O ₂ + hv	→ 20Н			IUPAC
SO ₂ + O ₃	$\rightarrow SO_4^=$			wetS.f90
SO ₂ +H ₂ O ₂	$\rightarrow SO_4^{=}$			wetS.f90
OH + H ₂ O ₂	$\rightarrow HO_2 + H_2O$	2.7E7		Carlton et al., 2007
HO ₂ + HO ₂	\rightarrow H ₂ O ₂ + O ₂	8.3E5		Carlton et al., 2007
HOCHCH(OH) ₂ + OH	\rightarrow (OH) ₂ CHCH(OH) ₂ + HO ₂	5.0E8		Lim et al., 2005
HOCHCH(OH) ₂ + OH	\rightarrow (OH) ₂ CHCOOH + HO ₂ + HO ₂ + H ₂ O	1.0E8		Lim et al., 2005
(OH) ₂ CHCH(OH) ₂ + OH	→ (OH) ₂ CHCOOH + HO ₂	1.1E9	1516	Lim et al., 2005
CH ₃ COCH(OH) ₂ + OH	→ 0.86(OH) ₂ CHCOOH + 0.14HCOOH	7.0E8		Lim et al., 2005
(ОН) ₂ СНСООН + ОН	\rightarrow (COOH) ₂ + HO ₂ + H ₂ O	1.5E8		Lim et al., 2005
(СООН) ₂ + 2ОН	$\rightarrow 2CO_2 + 2H_2O$	4.7E7		Lim et al., 2005

The aqueous_phase module

HOCH₂CHO (glyocolaldehyde) CHOCHO (glyoxal)

CH₃COCHO (methylglyoxal)

(OH)₂CHCH(OH)₂ (glyoxal-hydrated)

HOCH₂CH(OH)₂
(glycolaldehyde-hydrated)

CH₃COCH(OH)₂ (methylglyoxal-hydrated)

(OH)₂CHCOOH
(glyoxylic acid-hydrated)

HCOOH (formic acid)

 $\stackrel{\hspace{1.5cm}}{\longrightarrow}$

Phase transfer Reactions with •OH

Aqueous Phase

(COOH)₂ CO₂ (oxalic acid)

•<u>Only 9 species</u> are allowed to be partitioned between gas and aqueous phase during a cloud period : **GLY, GLYAL, MGLY, PRV, HCOOH, OXL** and also **H**₂**O**₂, **HO**₂, **OH**

• The equilibrium solubility of gases in water is given by the Henry's law constant

$$H(T) = \frac{[C]}{P_g} \qquad \text{or} \qquad H_{eff}(T) = H(T) \left(1 + \frac{Ki(T)}{[H^+]}\right)$$

•Given the temperature (T), the effective Henry's law coefficient H_{eff} and the liquid water content (LWC), it can be defined **a phase ratio** P_x (Lelieveld and Crutzen, 1991; Dentener, PhD Thesis, 1993)

$$P_{x} = H_{eff} * R * T * LWC$$

P_x gives the fraction of molecules in a certain, cloud containing volume of air, which resides in the aqueous phase

Solubility of Gases in Cloud Droplets

•The relationship between the chemical concentration of X species in the liquid phase, the gas-phase and the total concentration (X_{tot} molecule cm⁻³) is calculated using the P_x

$$[X]_{(aq)} = P_x[X]_{(gas)}$$

$$[X]_{(aq)} = \frac{P_x[X]_{total}}{1 + P_x} \qquad [X]_{(gas)} = \frac{[X]_{total}}{1 + P_x}$$

•The conditions of establish this equilibrium are not always fulfilled, and the transfer of species between gas and aqueous phases have to be defined as mass transport, limited by diffusion in the gas phase and across the interface.

Deviations from Henry's Law

-

Species	Modeled $\frac{C_a}{C_g}$ actual ratio : $\frac{C_g}{C_g}$	Equilibrium phase ratio : $K_H RTL$
O_3	$1.072(\pm 0.050) \times 10^{-7}$	1.097×10^{-7}
OH	$4.283(\pm 0.482) \times 10^{-5}$	4.191×10^{-4}
CH ₂ O	$0.0636(\pm 0.0004)$	0.0636
HCOOH	$1.257(\pm 0.230)$	1.388
HO ₂	$0.0665(\pm 0.0144)$	0.3116
H_2O_2	$1.816(\pm 0.012)$	1.807
CH ₃ OO	$2.478(\pm 0.017) \times 10^{-4}$	2.480×10^{-4}
CH ₃ OOH	$4.837(\pm 0.028) \times 10^{-3}$	4.821×10^{-3}
NO	$1.681(\pm 0.009) \times 10^{-8}$	1.677×10^{-8}
NO_2	$6.600(\pm 0.035) \times 10^{-8}$	6.583×10^{-8}
HNO ₃	$1.367(\pm 3.615) \times 10^7$	9.566×10^{7}
NO_3	$3.652(\pm 6.087) \times 10^{-6}$	1.715×10^{-5}
N_2O_5	0.000	7.016×10^{6}

- The modeled phase ratios agree within 1% for CH_2O , H_2O_2 , CH_3OO , CH_3OOH , NO, and NO_2 , and agree within 20%, for O_3 , OH, HCOOH, and HO_2 .
- Species that clearly <u>are not in equilibrium</u> are OH, HO₂, HNO₃, and NO₃.

Barth et al., 2003

Exchange between the gas and the aqueous phase

•The rate of change of a chemical species due to mass transfer between gas and liquid phase can be defined as:

$$k_t = \left(\frac{r^2}{3D_g} + \frac{4r}{3\upsilon a}\right)^{-1}$$

Where:

 k_t is the transfer coefficient (s⁻¹)

r is the droplet radius (cm)

D_g is the gas-phase diffusion coefficient (cm² s⁻¹), calculated as $D_g = 1.9(MW)^{-\frac{2}{3}}$

υ is the mean molecular speed (cm s⁻¹), calculated as

$$\upsilon = \left(\frac{8k_B T N_a}{\pi (MW)}\right)^{-\frac{1}{2}}$$

and $\boldsymbol{\alpha}$ is the mass accommodation coefficient

Some aqueous_phase parameters

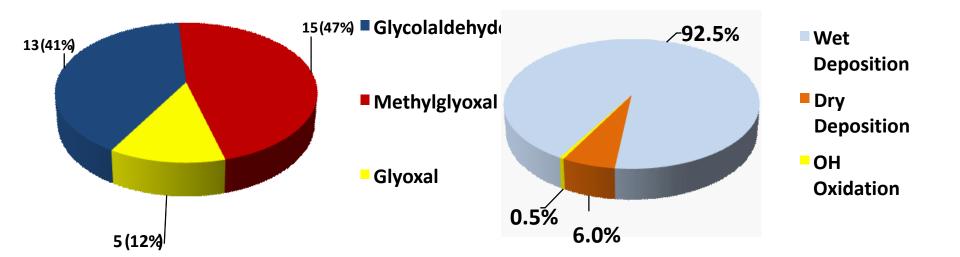
Species	H _K	dlnH _k /d(1/T)	Ref.	α	Ref.	
	(M atm⁻¹)	(К)		(298K)		
SO ₂	1.2	3200	Sander, 1999			
NH ₃	76	3400	Sander, 1999	0.09	Lim et al., 2005	
H ₂ O ₂	8.6 [.] 10 ⁴	6500	Sander, 1999	0.11	Lim et al., 2005	
HO ₂	4.0 [.] 10 ³	5900	Sander, 1999	0.01	Lim et al., 2005	
SO ₄ =	1.0 [.] 10 ⁷					
NH4 ⁺	1.0 [.] 10 ⁷					
НСООН	8.9 [.] 10 ³	6100	Sander, 1999	0.013	Lim et al., 2005	
CH ₂ (OH)CHO	4.1 [.] 10 ⁴	4600		0.023	Lim et al., 2005	
СНОСНО	3.0 [.] 10 ⁵		Sander, 1999	0.023	Lim et al., 2005	
CH ₃ COCHO	3.2 [.] 10 ⁴	7500	Lim et al., 2005	0.023	Lim et al., 2005	
НОС(О)СООН	9.12 [.] 10 ³		Lim et al., 2005	0.019	Lim et al., 2005	
(СООН) ₂	3.26 [.] 10 ⁶		Lim et al., 2005	0.019	Lim et al., 2005	

•Cloud Parameters as in wetS module:

LWC_offset=1.e⁻¹⁰ and CC_offset =0.01

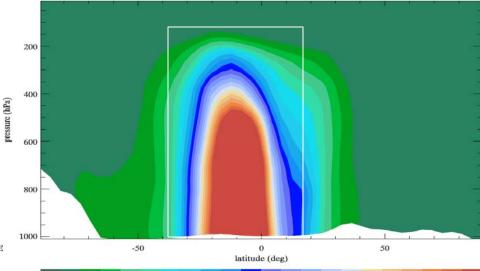
•pH is calculated in wetS module

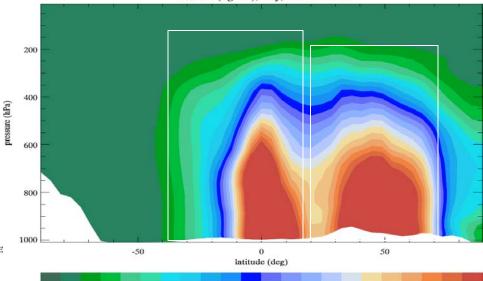
•The radius of cloud droplets is 5 μ m.



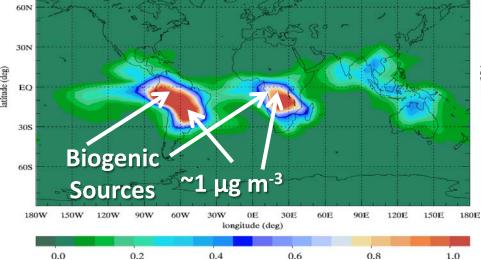
Some first OXL results with TM4-ECPL

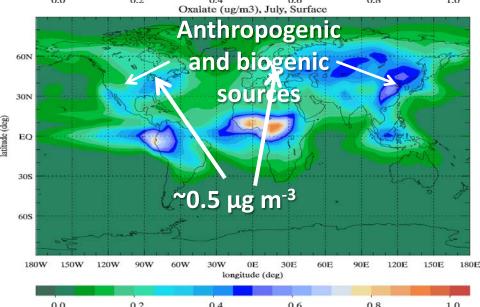
Budget Calculations of Oxalate with TM4-ECPL

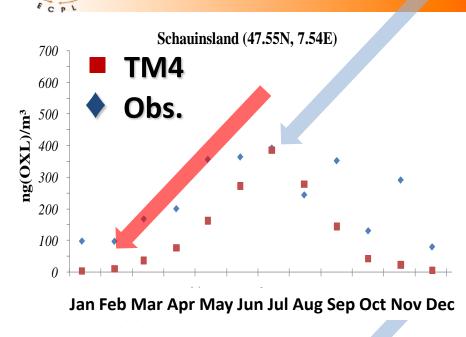

Chemical Production		Sinks				Mean
		OH Oxidation	Dry Deposition	Wet Deposition	Burden	Global Lifetime
33 Tg yr1						
Biogenic VOC	Anthropogenic VOC	0.1 Tg yr ⁻¹ (~0.5%)	2 Tg yr-1 (~6%)	30 .4 Tg yr ⁻¹ (~92.5%)	0.5 Tg	5 days
30 Tg yr ¹ (~91%)	3 Tg yr¹ (~9%)					

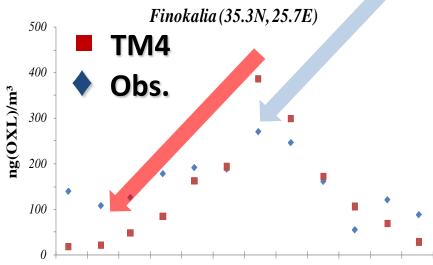

Oxalate Distributions – First Results

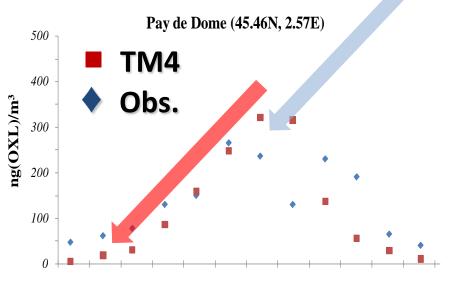
Oxalate (ug/m3), January, Surface



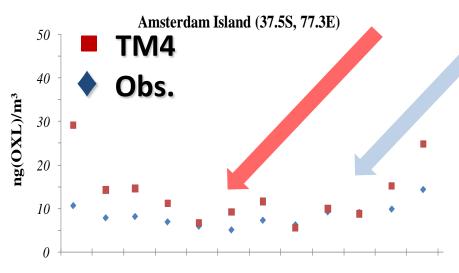

Oxalate (ug/m3), January, Zonal Mean







Comparison with Measurements – First Results



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Some more tests with the EBI solver in the aqueous phase compare to FACSIMILE

More Validation of OXL results (mainly in C. Africa and the Amazon Basin – extreme VOC emission cases)

Oxalate production also in particulate water (Ervens and Volkamer, 2010, ACPD)

[®]Organic mass aqueous phase production through acid catalysis and with inorganic constituents to form organic acids, oligomers and organosulfates (Lim et al., 2010, ACPD)

