

TM-meeting, 30-31 May 2011, ISPRA

TM4-ECPL modeling activities

Stelios Myriokefalitakis, Nikos Daskalakis, Kanakidou Maria Environmental Chemical Process Laboratory (ECPL), Department of Chemistry, University of Crete

> Kostas Tsigaridis NASA,GISS & Uni Columbia, NY

1. Multiphase chemistry (Stelios)

- 2. Interannual model evaluation & AEROCOM (Nikos)
- 3. Other ongoing and future activities (Maria)

SOA formation via aqueous-phase chemistry in TM4-ECPL

- 1. VOC photo-oxidation in the gas-phase
- 2. Production of water-soluble organic compounds in the gas-phase (e.g. aldehydes, organic acids)
- 3. Phase transfer between the gas and the aqueous phase
- 4. Production of low volatile compounds in the aqueous-phase (e.g. oxalic acid)
- 5. Upon cloud evaporation <u>new organic particulate matter</u> is formed

Myriokefalitakis et al, ACPD, 11,485,2011

The Revised Aqueous-Phase Chemical Scheme in TM4-ECPL

- 1. NO₃ Aqueous-phase Oxidation of Aldehydes and Organic Acids
- Lower Henry Constant of OH radicals (9 10³ mol lt⁻¹ atm⁻¹ -> 30 mol lt⁻¹ atm⁻¹)
- 3. Different cloud droplet radius over land (5 μm) and over oceans (10 μm)
- 4. Simultaneously S(IV) and Organic molecules aqueous-phase oxidation using EBI solver

pH Dependence of S(IV) oxidation by ozone

•TM4-ECPL does not take into account the different forms of the sulfuric acid $(SO_2.H_2O, HSO_3^{-2}, SO_3^{-2})$., in order to take into account the different forms and reaction rates, we use the mole fraction (ξ) of each acid as a function of pH. The total mass of S(IV) is calculated as S(IV)=SO_2.H_2O + HSO_3^{-2} + SO_3^{2-}.

$$\xi_{SO_2.H_2O} = \frac{[SO_2 \cdot H_2O]}{[S(IV)]} = \left(1 + \frac{Keq_1}{[H^+]} + \frac{Keq_1Keq_2}{[H^+]^2}\right)^{-1} \quad \xi_{HSO_3^-} = \frac{[HSO_3^-]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_1} + \frac{Keq_2}{[H^+]}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_1Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_1Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_1Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_1Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H^+]^2}{Keq_2}\right)^{-1} \quad \xi_{SO_3^{2-}} = \frac{[SO_3^{2-}]}{[S(IV)]} = \left(1 + \frac{[H^+]}{Keq_2} + \frac{[H$$

•For 25°C, the oxidation of SO₂.H₂O, HSO₃⁻, SO₃⁻² accounts a rate of Keq₁= 2.4 10⁴ mol⁻¹ lt s⁻¹, Keq₂= 3.7 10⁵ mol⁻¹ lt s⁻¹ and Keq₃= 1.5 10⁹ mol⁻¹ lt s⁻¹ proportionally (Seinfeld and Pandis,1998). •Ktotal(SIV)=Keq1* $\xi_{SO2.H2O}$ + Keq2* ξ_{HSO3-} + Keq₃* $\xi_{SO3=}$

Inorganic Aqueous-Phase Chemistry

	Aqueous Phase Reactions				
1	$O_3 + hv (+ H_2O)$	\rightarrow	$H_2O_2 + O_2$		
2	$H_2O_2 + hv$	\rightarrow	20H		
3	$NO_{3}^{-} + hv (+ H^{+})$	\rightarrow	$NO_2 + OH$		
4	$HO_2 + HO_2$	\rightarrow	$H_2O_2 + O_2$		
5	$HO_2 + O_2^- (+ H^+)$	\rightarrow	$H_2O_2 + O_2$		
6	$O_3 + O_2^- (+ H^+)$	\rightarrow	$OH + 2O_2$		
7	$O_3 + OH$	\rightarrow	$HO_2 + O_2$		
8	$HO_2 + OH$	\rightarrow	$O_2 + H_2O$		
9	OH + OH	\rightarrow	H ₂ O ₂		
10	$H_2O_{2-} + OH$	\rightarrow	$HO_2 + H_2O$		
11	$NO_3 + HO^-$	\rightarrow	$NO_3^- + OH$		
12	$S(IV) + H_2O_2$	\rightarrow	SO ₄ ²⁻		
13	$S(IV) + O_3$	\rightarrow	SO ₄ ²⁻		

SO₄²⁻ -validation in TM4-ECPL

ECPL- Chemistry Department - University of Crete

Organic Aqueous-Phase Chemical Scheme – Aldehydes (C1-C3)

Aqueous Phase Reactions						
14	$CH_2(OH)_2 + OH (+ O_2)$		\rightarrow	$HCOOH + HO_2 + H_2O$		
15	$\mathrm{CH}_2(\mathrm{OH})_2 + \mathrm{NO}_3(+\mathrm{O}_2)$		\rightarrow	$HCOOH + HO_2 + NO_3^- + H^+$		
16	$GLYAL + OH (+ O_2)$		\rightarrow	$GLY + HO_2$		
17	$GLYAL + 2 OH (+ 2 O_2)$		\rightarrow	$GLX + 2HO_2 + 2H_2O$		
18	$GLYAL + NO_3 (+ O_2)$		\rightarrow	$GLX + HO_2 + NO_3^- + H^+$		
19	$GLYAL + 2 NO_3 (+ O_2)$		\rightarrow	$GLY + 2 NO_3^- + 2 H^+ + H_2O$		
20	$GLY + OH (+ O_2)$		\rightarrow	$GLX + HO_2 + H_2O$		
21	GLY + OH		\rightarrow	$0.03 \text{GLX} + 0.97 \text{OXL} + \text{H}_2\text{O}$		
22	$\mathrm{GLY} + \mathrm{NO}_3 (+ \mathrm{O}_2)$		\rightarrow	$\mathrm{GLX} + \mathrm{HO}_2 + \mathrm{NO}_3^- + \mathrm{H}^+$		
23	GLY + hv/OH aerosol water)	(only in	\rightarrow	0.20XL + 0.80LIGOMERIC-SOA		
24	$GLY + NH_4^+$ aerosol water)	(only in	\rightarrow	OLIGOMERIC-SOA		
25	$MGLY + OH (+ O_2)$		\rightarrow	$0.92 \text{PRV} + 0.08 \text{GLX} + \text{HO}_2 + \text{H}_2\text{O}$		
26	$MGLY + NO_3 (+ O_2)$		\rightarrow	$0.92PRV + 0.08GLX + HO_2 + NO_3^- + H^+$		

Organic Aqueous-Phase Chemical Scheme – Organic Acids

Aqueous Phase Reactions						
HCOOH + OH (+ O_2)	\rightarrow	$CO_2 + HO_2 + H_2O$				
$HCOO^{-} + OH (+ O_2)$	\rightarrow	$CO_2 + H_2O (+O_2)$				
$HCOOH + NO_3 (+ O_2)$	\rightarrow	$CO_2 + NO_3^- + 2H^+ (+O_2^-)$				
$HCOO^{-} + NO_3 (+ O_2)$	\rightarrow	$CO_2 + NO_3^- + H^+ (+ O_2^-)$				
$CH_3COOH + OH (+ O_2)$	\rightarrow	$0.85GLX + 0.15CH_2(OH)_2$				
$CH_3COO^- + OH (+ O_2)$	\rightarrow	$0.85 \text{GLX}^{-} + 0.15 \text{CH}_2(\text{OH})_2$				
$CH_3COOH + NO_3 (+ O_2)$	\rightarrow	$0.85GLX + 0.15CH_2(OH)_2 + NO_3^- + H^+$				
$CH_3COO^- + NO_3 (+ O_2)$	\rightarrow	$0.85GLX^{-} + 0.15CH_{2}(OH)_{2} + NO_{3}^{-} + H^{+}$				
$PRV + OH (+ O_2)$	\rightarrow	$CH_3COOH + HO_2 + CO_2$				
PRV ⁻ + OH	\rightarrow	$CH_3COO^- + HO_2 + CO_2$				
$PRV + NO_3 (+ O_2 + H_2O)$	\rightarrow	$CH_{3}COOH + CO_{2} + HO_{2} + NO_{3}^{-} + H^{+}$				
$PRV^{-} + NO_3 (+ O_2 + H_2O)$	\rightarrow	$CH_{3}COO^{-} + CO_{2} + HO_{2} + NO_{3}^{-} + H^{+}$				
$GLX + OH (+ O_2)$	\rightarrow	$OXL + HO_2 + H_2O$				
$GLX^{-} + OH (+O_2)$	\rightarrow	$OXL^{-} + HO_2 + H_2O$				
$GLX + NO_3 (+ O_2)$	\rightarrow	$OXL + HO_2 + NO_3^- + H^+$				
$GLX^{-} + NO_3 (+ O_2)$	\rightarrow	$OXL^{-} + + HO_{2} + NO3^{-} + H^{+}$				
OXL + 2OH	\rightarrow	$2CO_2 + 2H_2O$				
$OXL^{-} + OH (+ O_2)$	\rightarrow	$2CO_2 + H_2O(+O_2)$				
$OXL^{2-} + OH (+ O_2)$	\rightarrow	$2CO_2 + HO^- (+ O_2^-)$				
$OXL + 2NO_3$	\rightarrow	$2CO_2 + 2NO_3^- + 2H^+$				
$OXL^2 + NO_3 (+ O_2)$	\rightarrow	$2CO_2 + NO_3^- + H^+ (+ O_2^-)$				
$OXL^{2-} + NO_3 (+ O_2)$	\rightarrow	$2CO_2 + NO_3^- (+ O_2^-)$				

OXL Calculated Distributions

Global OXL Validations

F-value

0.290

14.842

42.653

65.598

41.346

Observations - ng(OXL) m⁻³

OXL Validations – OLD(ACPD) Vs. Revised Simulations

Global Oxalate Distributions

Oxalate – OC contribution to total_OC (C-ratio) OC OXL/OC, Zonal Mean, Annual Mean, S1 OC OXL/OC, Surface, Annual Mean, S1

1000

0.20

0.08

0.12

0.16

0.00	0.04	0.08	0.12	0.16	0.20

0.00

0.04

Global Oxalate Distributions

University of Crete

Department -

ECPL- Chemistry

- 1. Multiphase chemistry (Stelios)
- 2. Interannual model evaluation & AEROCOM (Nikos)
- 3. Other ongoing and future activities (Maria)

Changes in TM4ECPL

anthropogenic emissions updated to CIRCE database (2000 - 2010)

Interannual 2000 – 2005, 2010 (projection), 2006-2009 interpolated 0.1x0.1 ascii files \rightarrow 1x1 hdf files

 <u>Iand emissions (2d)</u> BC, CO, NH₃, NOx, OC, SO₂, NMVOC
<u>ship emissions (2d)</u> BC, CO, NOx, OC, SO₂, NMVOC
<u>aircraft emissions (3d)</u> BC, CO, NOx, OC, SO₂, NMVOC
<u>All 3 categories with speciated NMVOC</u> speciation based on POET NMVOC speciation <u>species:</u>acetone, butane, butene, C₂H₂, C₂H₅OH, C₂H₆, C₃H₆, C₃H₈, CH₂O, CH₃CHO, CH₃OH, MEK, toluene, benzene, xylene

Global Fire Emission Database v2 (1998 – 2008)

Gridded 1x1 netcdf files used, already speciated nmvocs (van der Werf) Vertical elevation of Biomass Burning emissions based on Dentener et al, 2006

AEROCOM runs re-done

Interannual 6x4 (2000-2007) 2006 3x2

Model evaluation

updated version (CIRCE anthropogenic, GFED v2, ERA meteorology, Organic Carbon (comparison at all available stations) (ug/m3)

Organic Carbon - evaluation

Model evaluation after the changes •CIRCE anthropogenic

- •Poet biogenic
- •GFED v2
- operational meteo data

mean 100.00 urbar remote marine 10.00 TM4CN (2005) 1.00 0.10 0.0 0.01 0.10 1.00 10.00 100.00 Measurements (all, 2005)

- Model evaluation after the changes
- •CIRCE anthropogenic
- •Poet biogenic
- •GFED v2
- •ERA meteo data

Model evaluation before the changes •POET anthropogenic

- Poet biogenic
- •GFED v2 CO and BC
- •operational meteo data

ECPL- Chemistry Department - University of Crete http://ecpl.chemistry.uoc.gr/kanakidou

University of Crete http://ecpl.chemistry.uoc.gr/<mark>kanakidou</mark> Chemistry Department -ECPL-

Jniversity of Crete http://ecpl.chemistry.uoc.gr/kanakidou Department -ECPL- Chemistry

- 1. Multiphase chemistry (Stelios)
- 2. Interannual model evaluation & AEROCOM (Nikos)
- 3. Other ongoing and future activities (Maria)

Jniversity of Crete /ecpl.chemistry.uoc.gr/kanakidou ECPL- Chemistry Department http:/

Organic aerosol - new perspectives- based on element ratios

total ON deposition g-N/m2/y gas+particles over ocean (18Tg-N/y)

OA carrier of nutrients Kanakidou et al., to be submitted to GBC, 2011 Contribution to GESAMP WG38 Further work at ECPL

- 1. Sensitivity of model results to meteo, emissions, OA parameterisations
- 2. Interannual trends in oxidants + PM (past 20 years)
- 3. Oxidant and PM levels simulations focus on Mediterranean
- 4. Budget analysis / import/export fluxes
- 5. Improve chemistry relevant parameterisations:
 - 1. OA parameterisations (volatility of POA, heterogeneous reactions, multiphase chemistry)
 - 2. oxidant chemistry (HOx recycling)
- 6. Sensitivity to emission location & height / geographic distribution/source receptor relationship/lifetime dependence
- 7. Impact of atmospheric deposition to the marine ecosystem (Mediterranean)