How much CO was emitted by the 2010 Russian fires?

Maarten Krol, Wouter Peters, Pim Hooghiemstra, Peter Bergamaschi + the ALANIS team members

TM meeting, 17–10–2012, Crete

Wednesday, October 17, 12

What is ALANIS?

Atmosphere Land interaction study, initiated by ESA & ILeaps

- Use of model & Remote sensing data to investigate Land-Atmosphere interactions in Boreal Eurasia
- Three themes:
 - Wetland methane emissions
 - Aerosols
 - Fires

ALANIS Fires

Combine different RS products with models to better quantify emissions from boreal fires

- Burning Scars (where do we see imprints of fires?)
- Smoke Plume Injection Heights (SPIH) (how do we distribute emissions with height?)
- IASI CO observations (What de we detect in the atmosphere?)

TM5 was used to integrate the products and to derive CO emissions

Setup 4D-VAR system

New PyShell code

- Emissions can now be optimized on daily timescales
- PyShell contains the semi-exponential description of the emission PDF
- IASI observations are assimilated (200.000 per month!)

Prior emissions + SPIH are used

- •Only the emission distribution is optimized!
- SPIH is kept fixed

MM3E250_V2 Modeled columns (#/cm2) (month,day)(7,1)

MM3E250_V2 Modeled columns (#/cm2) (month,day)(7,1)

IASI = Used for Optimization MOPITT = Used for Validation

Wednesday, October 17, 12

Sensitivities

MERGED	Based on MODIS & MERIS burned scars			
MERIS	Only based on MERIS burned scars			
GFAS	Burned on daily GFAS priors from the MACC project			
GFED3	Monthly GFED prior			
MERGED- CLIM	Using the SPIH from the Val-Martin Climatology			
MERGED– DAILY	Optimizing on daily time-scales			
MERGED- DIURNAL	Applied a strong diurnal pattern to the emissions			

Wednesday, October 17, 12

Optimized Emissions

Optimized Emissions (Tg/33 days)

Simulation	Prior R1	Poste R1	Prior R2	Poste R2
MERGED	1.06	6.82	6.5	26.6
MERIS	0.86	7.29	3.9	24.0
GFAS	10.52	9.93	12.4	22.0
GFED3	0.63	10.06	2.0	22.3
MERGED-CLIM	1.06	5.26	6.5	22.6
MERGED-DAILY	1.06	5.98	6.5	25.1
MERGED-DIURNAL	1.06	6.62	6.5	26.9

Validation on stations: observed 10 ppm!!

Wrap up

New PyShell-4DVAR system allows for: sub-monhtly optimization IASI CO column observations (200000/month) non-lineair systems (avoiding negative emissions) 2010 Russian fires emitted 22–27 Tg CO from mid-July to mid-August 2010 Peat burning emission estimates too low in 2010 Surface measurements Moscow still underestimated.