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Abstract. We introduce a novel spatio-temporal deformable part model
for offline detection of fine-grained interactions in video. One novelty of
the model is that part detectors model the interacting individuals in a
single graph that can contain different combinations of feature descrip-
tors. This allows us to use both body pose and movement to model the
coordination between two people in space and time. We evaluate the
performance of our approach on novel and existing interaction datasets.
When testing only on the target class, we achieve mean average preci-
sion scores of 0.82. When presented with distractor classes, the additional
modelling of the motion of specific body parts significantly reduces the
number of confusions. Cross-dataset tests demonstrate that our trained
models generalize well to other settings.

Keywords: human behavior, interaction detection, spatio-temporal lo-
calization

Fig. 1: Hand shake and object pass interactions with similar poses. We intro-
duce a model to detect interactions that differ slightly in their spatio-temporal
coordination by modeling pose and motion of specific body parts.
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1 Introduction

Action recognition in videos continues to attract a significant amount of research
attention [14]. Starting from the analysis of individuals performing particular
actions in isolation (e.g. [19]), there is a trend towards the contextual analysis
of people in action. There is much interest in the understanding of a person’s
actions and interactions in a social context, with research into the automated
recognition of group actions [2] and human-human interactions [13,17].

This paper contributes to the latter category. We focus on two-person (dyadic)
interactions such as shaking hands, passing objects or hugging. The type of inter-
action in which people engage informs us of their activity, the social and cultural
setting and the relation between them. Automated detection of interactions can
improve social surveillance, for example to differentiate between friendly and
hostile interactions or to determine whether a person in an elderly home is a
staff member, family member or unrelated visitor.

Poses of people in different interactions can be visually similar, for exam-
ple when shaking hands or handing over an object (see Fig. 1). To differentiate
between interactions, the coordinated movement of the people provides an addi-
tional cue. Not all body parts play an equally important role in each interaction.
For example, a hand shake is characterized by the movement of the right hands.
The distinction between such interactions requires a fine-grained analysis of the
specific pose and body motion of both persons involved in the interaction.

In this paper, we detect dyadic interactions based on structural models [29]
that combine pose (HOG) and movement (HOF) information. We train clas-
sifiers from videos and focus on those parts of the video that characterize the
interaction. This enables us to distinguish between interactions that differ only
slightly. An advantage of our method is that we can detect where the interaction
occurs in a video in both space and time. This property allows us to identify
who is involved in the interaction, or who hands over an object to whom.

Our contributions are as follows. First, we model the coordinated body move-
ment of the people involved. We introduce a novel model to exploit these cues
and to detect interactions in both space and time. Second, we present a proce-
dure to train a detector from a few examples with pose information. Third, we
demonstrate the performance of our framework on publicly available datasets.
We report spatio-temporal localization performance for models trained only on
the target interaction class.

We discuss related work in the next section. In Section 3, we introduce our
model and detail the training and test procedures. The evaluation of our work
appears in Section 4. We conclude in Section 5.

2 Related Work on Interaction Detection

The progress of vision-based action recognition algorithms is impressive [14]. Ini-
tial success was mainly based on bag-of-visual-word (BoVW) approaches that
map image feature distributions to action labels [19]. Wang et al. [26] link these
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features over time into dense trajectories, allowing for more robust representa-
tions of movement. The work has been extended by clustering the trajectories
to enable the spatio-temporal detection of actions [25].

While these representations have achieved state-of-the-art performance, they
do not explicitly link image features to human body parts. The availability of
body pose and, especially, body movement information has been found to in-
crease action classification performance [5]. This is because the pose or movement
of some body parts is often characteristic. For example, arm movement is more
discriminative than leg movement in a hand shake. Without pose information,
discriminative patterns of image movement can only be modeled implicitly, e.g.
using clusters of dense trajectories [11] or co-occurring spatio-temporal words
[32]. These approaches are automatic but less reliable in the presence of other
motions, when multiple people interact with each other in close proximity.

Part-based models such as Deformable Part Models (DPM, [3]) and poselets
[1] can detect people in an image and localize their body parts. These models
employ body part detectors and impose spatial contraints between these parts.
DPMs are sufficiently flexible to describe articulations of the body [29]. This
enables the detection of key poses representative of an action [15]. Often, two
actions cannot be distinguished based on a single key pose, see Fig. 1. Movement
can then be used to distinguish between classes [23]. Yao et al. [30] represent
actions as a combination of a pose and a mixture of motion templates.

In this paper, we follow this line of research, but extend it to the detection
of interactions. Researchers have started to analyze behavior of multiple people
[2,9]. Here, we focus on the recognition of two-person interactions. Recent work in
this area has used gross body movement and proximity cues for the detection of
interactions. A common approach is to first detect faces or bodies using off-the-
shelf detectors [13,18]. Detections of individuals can be paired and the resulting
bounding volume can be used to pool features in a BoVW approach [10].

The relative distances and orientations between people can also be used to
characterize interactions. Patron-Perez et al. [13] use coarse distance labels (e.g.,
far, overlap) and differences in head orientation. They also include local features
around each person such as histograms of oriented gradients (HOG) and flow
(HOF). Sener and İkizler [21] take a similar approach but cast the training as
multiple-instance learning, as not all frames in an interaction are considered
informative. For the same reason, Sefidgar et al. [20] extract discriminative key
frames and consider their relative distance and timing within the interaction.

Kong and Fu [7] observe that not all body parts contribute equally. Their
method pools BoVW responses in a coarse grid. This allows them to identify spe-
cific motion patterns relative to a person’s location but the level of detail of the
analysis is limited by the granularity of the patches and the accuracy of the per-
son detector. Yang et al. [28] found that a sequential approach of first detecting
individuals and then recognizing their interaction does not perform well when
there is physical contact. They significantly improve classification performance
by building detectors for various types of physical interactions such as hand-hand
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and hand-shoulder touches. Here we also focus on physical interactions, but we
look at the fine-grained differences between visually similar classes.

Proximity and orientation are good cues for detection of coarse interaction
classes, but less so to detect fine-grained interactions such as those in social
encounters. These are characterized by body movements that are visually similar,
but differ slightly in the temporal coordination. To distinguish between such
interactions, we need to more effectively model the coordination between the
people involved.

Kong et al. [8] train detectors for attributes such as “outstretched hands”
and “leaning forward torso” and consider their co-occurrences. Given sufficiently
detailed attributes, fine-grained interactions could be detected. However, as
each detector is applied independently, false detections are likely to occur. Van
Gemeren et al. [24] use interaction-specific DPMs to locate people in characteris-
tic poses. They then describe the coordinated movement in the region in between
DPM detections. As there can be significant variation in how people pose, this
two-stage approach strongly relies on the accuracy of the pose detection.

In this paper, we address this issue by combining the detection of the peo-
ple and their interaction in a single step. We diverge from Yao et al. [30], by
constraining how pose and motion are coordinated in a dyadic scenario, so we
can model spatio-temporal coordination at a much more fine-grained level. Yao
et al. train and test their model on human-object interaction tasks, whereas we
focus specifically on dyadic human interactions.

3 Modeling Fine-Grained Coordinated Interactions

We model two-person interactions based on DPMs for pose recognition in im-
ages, introduced by Yang and Ramanan [29]. We solve three limitations. First,
parts are not locally centered on body joints but are specific for an interaction
and typically encode the relative position and articulation of a body part, similar
to poselets [1]. Second, we allow each part detector to contain multiple image
cues. We explicitly enable the combination of static and temporal features. We
can thus decide per body part whether pose, motion or a combination is most
discriminative for a specific interaction. Third, we consider two persons simulta-
neously. Our formulation models the spatial and temporal coordination between
their poses and movements at a fine scale. We discuss the model, training algo-
rithm and detection procedure subsequently.

3.1 Model Formulation

Our model is motivated by the observation that many interactions are charac-
terized by a moment where the poses of two people are spatially coordinated
and the movement of a specific part of the body is temporally coordinated.

Let us define graph G = (V,E), with V a set of K body parts and E the
set of connections between pairs of parts [29]. Each body part i is centered on
location li = (xi, yi). For clarity, we omit in our formulation the extent of the
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body part’s area, as well as scaling due to processing an image i at multiple
resolutions. The scoring for a part configuration in image I is given by:

S(I, l) =
∑
i∈P

wi · φi(I, li) +
∑
ij∈E

wij · ψ(li − lj) (1)

The first term models the part appearance with a convolution of image fea-
ture vector φi(I, li) with trained detector wi. The second term contains the
pair-wise deformations between parts ψ(li − lj) =

[
dx dx2 dy dy2

]
, with dx =

rixi−rjxj and dy = riyi−rjyj the relative location of part i with respect to part
j [29]. These distances are defined with respect to root factor r, which allows for
scaling of parts with a different cell resolution as the root part [3]. wij encodes
the rest location and the rigidity of the connections between parts.

We now describe our adaptations of this model for the modeling of fine-
grained dyadic interactions.

Class-specific part detectors While [29] considers different body part
orientations as parameters in the model, we learn class-specific detectors that
encode the articulation of the body part directly. Though our method allows
for modeling multiple mixtures per part, our data only features homogeneous
interactions recorded from a specific viewing angle. Therefore, we use only a
single detector per class, instead of a mixture of part detectors. Aside from
having data that features interactions performed in different ways from multiple
viewpoints, increasing the amount of mixtures would also require a larger amount
of samples.

Multiple features Our model supports different types of features per part.
For part i with feature representations Di, we replace the first term in Eq. 1 by:∑

i∈P

∑
j∈Di

bijw
j
i · φ

j
i (I, li) (2)

φji (I, li) denotes a feature vector of type j (e.g., HOG or HOF) for part i.

Bias bij denotes the weight for each feature type. wji is the trained detector for
part i and feature type j. Parts can have different combinations of features Di.
As such, our formulation is different from Yao et al. [30], who require one HOG
template and a set of HOF templates per body part. In contrast, our model
allows us to focus on those features that are characteristic for a specific body
part and interaction class. We explicitly also consider features that are calculated
over time such as HOF descriptors.

Two-person interaction As there are two persons involved in a dyadic
interaction, we combine their body parts into the same graph. Each actor’s
body parts form a sub-tree in this (2K+ 1)-node graph. The torso parts of both
actors are connected through a virtual root part of the graph. This part does
not have an associated part detector but it allows us to model relative distances
between people. To our knowledge currently no methods exist that model dyadic
interactions as a single part based model.

In the experiments presented in this paper, the sub-tree of each person has
a torso root node with four child parts: head, right upper arm, right lower arm
and right hand.
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3.2 Training

Fig. 2: Frame with
superimposed pose
data.

For each interaction class, we learn the model from a set
of training sequences. We describe a sequence of length n
as X = {(Ii, yi, pi)}ni=1 with Ii an image frame, yi the in-
teraction label of frame i and pi a pose vector containing
the 2D joint positions of the two persons performing the
dyadic interaction. The metadata of the training videos
contains 3D skeleton joint positions, from which we cal-
culate 2D projections. We use this to place parts on limb
locations. We assume the sequences are segmented in time
to contain the interaction of interest. As the temporal seg-
mentation relies on human annotations the start and the
end of an interaction are not precisely marked. Therefore
we consider a single short sequence of frames most repre-
sentative for the interaction in each sequence, as the base
of the model. We call this sequence the epitome. We guar-
antee that the epitome is taken from the temporally segmented sequence.

Training consists of three steps. First, we determine the epitome frame per
training sequence. Second, we learn the initial body part detectors. Third, we
simultaneously update the epitome frame and the body part detectors.

Epitome frame detection We intend to find the prototypical interaction
frame of each training sequence. To this end, we pair-wise compare the joint
sets of all frames in two sequences. For our experiments, we consider all joints
in the right arm of both persons in interaction (green parts in Fig. 2). We can
efficiently identify the epitome in each sequence with the Kabsch algorithm [6].
We use it to compare sets of coordinates in a translation, scale and rotationally
invariant way. Based on the Kabsch distance between the video with the lowest
sum distance to all other videos, we label each sequence as prime if this distance
is below 0.5, and inferior otherwise. Essentially we separate the videos in which
the skeleton poses look-alike, from the videos where they don’t.

Initial model learning We learn body part detectors wji (Eq. 2) from the
prime sequences. We determine, for each part, the type, spatial resolution and
temporal extent. In this paper, we consider HOG and HOF features [26] but the
DPM inference algorithm is well suited to incorporate a learned feature extractor
such as convolutional neural networks (CNN) [4]. The spatial resolution indicates
the cell size. For HOF, the temporal extent dictates how many frames around
the epitome frame are used.

For each interaction, we train body part detectors for both persons using
Dual Coordinate Descent SVM (DCD SVM) solvers [22]. After the positive op-
timization round, we perform a round of hard negative detection [3]. Negative
examples are harvested in random frames of the Hannah dataset [12], to avoid
overfitting to a particular training set, and to allow for the extraction of realistic
motion patches. After optimizing all part mixtures, we combine all parts into a
single spatio-temporal DPM (SDPM). The locations of the parts are based on
the average relative center locations in the pose data.
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Fig. 3: Top row: HOG pose models for fist bump, hand shake, high five and
pass object. Bottom row: HOF features of the right hands. The red rectangle
indicates the enclosing bounding box of the two hands.

Epitome and model refinement Once an initial SDPM is constructed,
we apply it to both prime and inferior training sequences to detect new latent
positive interaction examples. We search for the highest scoring frame in each
sequence to update the positive example set. Given that the initial epitome
frames are selected solely based on pose, this step allows us to better represent
the motion of the body. The resulting positive example set is used to optimize
the model features and to determine all part biases and deformation parameters
using the DCD SVM solvers. Example models are shown in Fig. 3. Note the
vertical hand movement for the hand shake model and the horizontal movement
for fist bump.

3.3 Spatio-Temporal Localization

Fig. 4: Detected spatio-temporal inter-
action tube (red) for a hand shake. The
green rectangle shows the best detec-
tion.

With a trained SDPM, we can detect
interactions in both space and time.
We specifically avoid 3D feature ex-
traction during training because we
want to be able to apply our model
on data that does not contain any
depth information. We first detect in-
teractions in frame sequences that last
shorter than a second, and then link
these to form interaction tubes, with-
out the use of depth information.

We generate a feature pyramid for
each of the feature types to detect in-
teractions at various scales. We ex-
tend the formulation to deal with fea-
ture types with a temporal extent. Based on Eq. 1, we generate a set of detection
candidates spanning the entire video. In practice, we evaluate non-overlapping
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video segments. For a temporal HOF size of nine frames, we evaluate every ninth
frame. Overlapping detections are removed with non-maximum suppression.

Interaction Tubes We link frame detections into interaction tubes (see
Fig. 4). We sort candidate detections on detection score. Each tube starts with
the best scoring detection. We then greedily assign the detections of adjacent
frames to the current tube. A detection is only added if it satisfies a minimum
spatial overlap constraint ρ of 50% and a maximum area deviation of 50% with
respect to the best detection. We iterate until all candidate detections have been
assigned to a tube. Finally we remove all tubes with only a single detection.

4 Experiments and Results

Previous research on interaction recognition has considered assigning labels to
video sequences that have been segmented in both space and time. In contrast, we
focus on spatio-temporal detection of interactions from unsegmented videos. To
address this scenario, we present a novel dataset and our performance measures.
Subsequently, we summarize the setup and results of our experiments.

4.1 Datasets

As available interaction datasets contain behaviors that are visually quite dis-
similar, we introduce a novel dataset ShakeFive2 1 with interactions that differ
slightly in their coordination. We train interaction detection models on this
dataset and present the performance of different settings. In addition, we test
these models on publicly available interaction datasets SBU Kinect [31] and
UT-Interaction [17]. Example frames from each of these datasets can be seen in
Fig. 5.

Fig. 5: Example frames from the datasets used in this paper: ShakeFive2, SBU
Kinect and UT-Interaction. Top row: hand shake, bottom row: hug.

1 ShakeFive2 is publicly available from https://goo.gl/ObHv36

https://goo.gl/ObHv36
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ShakeFive2 consists of 94 videos with five close proximity interaction classes:
fist bump, hand shake, high five, hug and pass object. Each video contains one
two-person interaction, recorded under controlled settings but with small vari-
ations in viewpoint. We note that in the pass object interaction a small orange
object is passed from one person to the other. This is the same small object for
all videos. For each person in each frame, 3D joint position data obtained using
Kinect2 is available.

SBU Kinect involves two actors performing one interaction per video in an
indoors setting. The interactions are: hand shake, high five, hug, pass object, kick,
leave, punch and push. Pose data, obtained with a Kinect, is provided but not
always accurate. From the 260 videos, we exclude 42 with incorrect pose data.

UT-Interaction consists of two sets of 10 videos each. The first set features
two persons in interaction per video, while the second set contains multiple pairs
per video. The following interactions are performed: hand shake, hug, kick, point,
punch and push. No pose data is available but bounding boxes are provided.
These span the entire spatial extent of the interaction. To have a more tight
estimate of the interaction per frame, we use the bounding box data from [21].

4.2 Performance Measurements

As we detect interactions in both space and time, we use the average intersection
over union of the ground truth G and detected tube P as in [25]. G and P are
two sets of bounding boxes and θ is the set of frames in which either P or G is
not empty. The overlap is calculated as:

IoU(G,P ) =
1

‖θ‖
∑
f∈θ

Gf ∩ Pf
Gf ∪ Pf

(3)

We evaluate different minimal overlap thresholds σ for which IoU(G,P ) ≥ σ.
For cross-validation tests, we create one precision-recall diagram per fold. We
report the mean average precision (mAP) scores as the mean of the areas under
the curves of each fold.

We consider two testing scenarios: single-class (SC) and multi-class (MC).
For single-class detection, we apply a detector for a given interaction class to
test videos of that class only. This scenario measures the spatio-temporal local-
ization accuracy. In the multi-class scenario, we test the detector on all available
test sequences in the dataset. This allows us to determine whether there are con-
fusions with other interactions. In the multi-class scenario, the same interaction
can be detected with models of different classes. This common situation will lead
to false positives as we do not compare or filter these detections. The reported
mAP scores are therefore conservative but demonstrate the performance of our
models without discriminative training.

To assess which pairs of classes are more often confused, we introduce a novel
measure that takes into account the spatio-temporal nature of our problem. We
test a trained detector in the single-class and multi-class detection scenarios
and calculate the difference in mAP (d-mAP) scores between these two settings.
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When no false positives have been identified, the d-mAP score is zero. Higher
d-mAP scores are due to the performance loss caused by the false positives for
the particular distractor class.

4.3 Features and Experiment Setup

Our model can be trained using different types of descriptors per part. In our
experiments, we consider HOG and HOF descriptors. For HOG, we use the
gradient description method of [3], which differs slightly from [26]. Optical flow
is calculated with DeepFlow [27]. For the time dimension of HOF, we use three
bins of three frames each. For a 30fps video, this covers about a third of a second.

We use a HOG model that describes the torso with 4 × 8 cells, the right
upper arm with 7× 8, right lower arm with 9× 7 and the right hand and head
with 6× 6 cells. The number of pixels per cell is 8× 8 for the torso and 4× 4 for
other body parts. The HOF model is similar but all body parts are encoded as
HOF. The HOGHOF model describes the torso and head as HOG, the right
upper and lower arms as HOG and HOF and the right hand with HOF.

Models are trained on the data of ShakeFive2 using three-fold cross-validation.
In each fold, there are six or seven sequences per class. We therefore train on
either 12 or 13 sequences only. The performance in the single-class scenario is
calculated as the average performance over the three folds. In the multi-class
scenario, we combine the test folds of the different interaction classes, creating
a set of 30–34 videos of which six or seven are of the target class.

4.4 Detection Results

We first investigate the added value of using motion information for interaction
detection. We test the HOG, HOF and HOGHOF models on the ShakeFive2
dataset. We refer to the five interactions as FB (fist bump), HS (hand shake),
HF (high five), HU (hug) and PO (pass object). Results for the single-class (SC)
and multi-class (MC) scenarios are shown in Table 1. We use a minimal overlap
σ between the detected tube and the ground truth volume (Eq. 3) of 10%.

Table 1: Single-class (SC) and multi-class (MC) mAP scores on ShakeFive2.

SC/MC FB HS HF HU PO Avg.
HOG SC 0.74 0.79 0.75 0.61 0.95 0.77
HOF SC 0.55 0.75 0.70 0.65 0.55 0.64

HOGHOF SC 0.83 0.95 0.83 0.61 0.88 0.82
HOG MC 0.32 0.55 0.39 0.37 0.63 0.45
HOF MC 0.23 0.60 0.48 0.51 0.28 0.42

HOGHOF MC 0.54 0.88 0.50 0.34 0.57 0.57

When tested on only videos of the same class (SC), we see that the HOGHOF
model outperforms both HOG and HOF. This demonstrates that interactions
are most accurately detected by a combination of pose and motion information.
The lower performance of HOF indicates that movement information alone is
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not sufficient to robustly detect interactions from video. When additional se-
quences of other interaction classes are available (MC), we notice a significant
drop for all models but less so for HOGHOF. Especially the lack of pose in-
formation in the HOF model appears to cause misclassifications between inter-
actions. The combination of pose and motion in the HOGHOF model appears
to work best. Note that all models are trained on at most 13 positive training
sequences and that the other interactions are not provided as negative samples.
The models are therefore not trained to discriminate between interaction classes.

Table 2: d-mAP scores for the HOG (left) and HOGHOF (right) models on
ShakeFive2. In columns the true class, in rows the tested class.

FB HS HF HU PO
FB 0.41 0.24 0.16 0.44
HS 0.22 0.15 0.15 0.31
HF 0.32 0.31 0.20 0.25
HU 0.23 0.26 0.23 0.19
PO 0.15 0.27 0.07 0.05

FB HS HF HU PO
FB 0.19 0.16 0.13 0.28
HS 0.04 0.04 0.04 0.09
HF 0.26 0.19 0.11 0.16
HU 0.29 0.18 0.24 0.22
PO 0.19 0.25 0.09 0.05

There are some differences in performance between the interaction classes.
Hand shakes can be detected relatively robustly by all models, whereas espe-
cially hugs are often not detected. In the multi-class setting, we can investigate
how often interaction classes are confused. We present the d-mAP multi-class
detection scores on ShakeFive2 for the HOG and HOGHOF models in Table 2.
For the HOG model, there are many confusions. Apparently, the pose informa-
tion alone is not sufficiently informative to distinguish between interactions that
differ slightly in temporal coordination: hand shake, fist bump and pass object.
The number of confusions for the HOGHOF model is much lower. The addi-
tional motion information can be used to reduce the number of misclassification
between visually similar interactions.

We note that especially fist bump and hand shake have fewer confusions with
the HOGHOF model compared to the HOG model. However, the HOGHOF
model for pass object has more confusions. We expect that the variation in the
performance of this interaction leads to a suboptimal model during training.
This can be seen in Fig. 3 as well. The HOG description of the pose is somewhat
ambiguous, while the HOF descriptor of the hands is similar for the pass object
and fist bump interactions. Indeed, many pass object interactions are detected
as fist bumps.

4.5 Parameter Settings

Next, we investigate the influence on the detection performance of the most
important parameters of our models: the minimal tube overlap (σ), the minimal
spatial overlap (ρ) and the number of training sequences.

Minimal tube overlap is a measure of how accurate the detections are in
both space and time. A higher threshold σ requires more accurate detection. In
line with [25], we vary this threshold from 0.1 to 0.5. Fig. 6 shows the performance
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of the three models for increasing σ. We note that HOG (Fig. 6a) shows a
better performance than HOF (Fig. 6b) when σ increases. When HOG and
HOF are combined (HOGHOF, in Fig. 6c), we observe a significant increase in
performance and mAP scores that remain higher for larger values of σ.

(a) HOG (b) HOF (c) HOGHOF

Fig. 6: mAP scores over all interaction classes in the single-class (solid line) and
multi-class (dashed) scenarios of ShakeFive2 for increasing values of σ.

Minimal spatial overlap Subsequent detections in time are linked provided
that they sufficiently overlap spatially. The default threshold ρ of 50% is in line
with object detection research but Fig. 7a shows the mAP scores for different
values of ρ, with best results for ρ = 58%. A higher value for ρ results in fewer
links and, consequently, smaller tubes. With a lower threshold, noisy detections
are more often linked to the tube, also resulting in a lower mAP.

Amount of training data We noticed that the HOGHOF models achieve
good detection performance despite being trained on a small number of example
sequences. Here we test the performance of the model when trained on different
numbers of sequences. Fig. 7b shows the mAP scores when training on 2, 12–13
(3 folds), and 15–16 (6 folds) sequences. For the first setting, we sampled pairs
of training sequences. Clearly, performance is lower when training on just two
training sequences. The difference between 12–13 and 15–16 sequences is very
small. This suggests that saturation occurs at a very low number of training
data. This is advantageous as obtaining training sequences with associated pose
data might be difficult, especially when many interaction classes are considered.

4.6 Performance on SBU Kinect and UT-Interaction

To compare our method to previous work, we also evaluate the performance on
publicly available interaction datasets SBU Kinect and UT-Interaction. We train
HOGHOF models on all available sequences in ShakeFive2. Results reported
are for cross-dataset evaluation. In the single-class scenario, we only report the
interactions are shared between ShakeFive2 and the other two datasets. We
evaluate all available videos in the dataset in the multi-class scenario.

Even though the three datasets are similar in the type of interaction, there
are several notable differences. First, there is variation between the datasets
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(a) mAP per ρ (b) mAP and # videos (c) mAP per τ

Fig. 7: mAP scores for different parameter settings in the single-class (solid line)
and multi-class (dashed) scenarios. Fig. 7a shows the influence of the minimal
spatial overlap on the performance. Fig. 7b shows the performance with different
amounts of training videos: 2 (red), 12-13 (blue) or 15-16 (green). Fig. 7c shows
the influence on the minimal tube overlap for different datasets: ShakeFive2
(blue), SBU Kinect (red) and UT-Interaction (green).

in the viewpoint and the performance of the interactions (see also Fig. 5). For
example, the average durations of hand shakes in ShakeFive2 and UT-Interaction
are 27 and 100 frames, respectively, both at 30 frames per second. Also, the
percentage of positive interaction frames differs. For UT-Interaction, 5% of the
frames contain the interaction of interest. This is 12% for ShakeFive2, and all
frames of SBU Interact contain the target interaction.

To account for differences in interaction length, we introduce minimal tube
length τ . Tubes shorter than τ segments are removed. This is beneficial for
datasets with significantly longer interactions than in the training data. Fig. 7c
summarizes the performance of the HOGHOF model on the evaluated datasets.
ShakeFive2 and SBU Kinect have similar profiles, UT-Interaction scores better
for τ values around 4. For SBU Kinect and UT-Interaction, we set τ = 2.

Table 3: Single-class (SC) and multi-class (MC) mAP scores for SBU Kinect.

SC/MC HS HU PO
HOGHOF SC 0.94 0.68 0.87
HOGHOF MC 0.71 0.53 0.24

SBU Kinect Table 3 summarizes the performance on SBU Kinect. We have
tested the “noisy” variation of this dataset using our HOGHOF model with
σ = 0.1, ρ = 0.5 and τ = 2. We observe high scores in the single-class scenario,
even though we did not train on this dataset. For comparison, Yun et al. [31]
report classification performance on the dataset when using the pose features.
They obtain 75%, 61% and 85% recognition accuracy for the hand shake, hug and
pass object interactions, respectively. While these scores cannot be compared
directly, it is clear that classification of segmented sequences already presents
challenges. Detecting the interaction in space and time adds to the challenge.
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Table 4: d-mAP scores for the HOGHOF models on SBU Kinect. In columns
the true class, in rows the tested class.

HS HU KI LV PC PS PO
HS 0.03 0.08 0.06 0.12 0.18 0.14
HU 0.18 0.21 0.14 0.22 0.24 0.26
PO 0.38 0.08 0.22 0.29 0.23 0.40

We note that the detection of the pass object interaction scores particularly
low in the multi-class setting compared to the single-class setting. To analyze
confusions, Table 4 presents d-mAP values for all SBU Kinect interactions: hand
shake (HS), hug (HU), kick (KI), leave (LV), punch (PC), push (PS) and pass
object (PO). Many hand shake and push interactions are detected as pass ob-
ject. These three interactions are characterized by extended, horizontally moving
arms. The pass object model clearly is not discriminative enough to pick up on
the subtle differences between the interactions.

Table 5: Single-class (SC) and multi-class (MC) mAP scores for UT-Interaction
(left). Classification accuracies reported on UT-Interaction (right).

Set HS HU Avg.

SC
#1 0.61 0.39

0.57
#2 0.90 0.36

MC
#1 0.48 0.38

0.46
#2 0.63 0.36

Method Avg.
Raptis & Sigal [15] 100%
Ryoo [16] 85%

Sener & İkizler [21] 100%
Zhang, et al. [32] 100%

UT-Interaction Finally, we evaluate the HOGHOF models on the UT-
Interaction dataset. Results of our model and previously reported results are
summarized in Table 5. A direct comparison with other works is difficult for a
number of reasons. First, we report detection results only for hand shake and
hug, the common interactions between ShakeFive2 and UT-Interaction. Second,
we report spatio-temporal localization results, whereas other works consider a
recognition scenario. In this setting, volumes segmented in space and time are
classified. Third, we train our models on a different dataset.

Table 5 shows the detection results on both sets of UT-Interaction. Our
HOGHOF can detect multiple simultaneous interaction, as witnessed by the
scores on set 2. The detection of hugs is much lower. We attribute this to the
longer duration of the hugs. Many hugs are not detected for a sufficient number
of subsequent frames. As a result, there are missed detections. Higher values for
τ can alleviate this problem.

5 Conclusions and Future Work

We have introduced a novel model for the detection of two-person interactions.
Our spatio-temporal deformable part models combine pose and motion in such a
way that we can model the fine-grained coordination of specific body parts. For
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the first time, we address the spatio-temporal detection of interactions from un-
segmented video. Our approach allows us not only to say whether an interaction
has occurred, but also to recover its spatial and temporal extent.

Interaction models are trained from only a few videos with pose information.
On the novel ShakeFive2 dataset, we achieve mAP scores of 0.82 when training
on 12–13 sequences. In the presence of visually similar interactions, motion infor-
mation reduces the number of misclassifications. We obtain mAP scores of 0.57
without discriminative training, and without filtering the detections. Moreover,
our cross-dataset evaluations on the publicly available UT-Interaction and SBU
Kinect datasets demonstrate that the model generalizes to different settings.

Despite its good performance, the method has some limitations. Most im-
portantly, the number of false detections is considerable. Currently, we can have
several detections of the same interaction. By filtering these, we can reduce the
number of false positives. This will allow us to report classification results. An-
other improvement is the discriminative training of the interaction models. This
is likely to improve the detection performance as each model can focus on those
parts of the pose or motion that are discriminative for the interaction.

Pose data is required to train our models. We are considering incremen-
tal training schemes that alleviate this need. Finally, we would like to include
multiple perspectives to improve viewpoint independence. While there is some
variation within and between the datasets that we have evaluated, viewpoint
invariance will further increase the applicability of our work.

Together, we envision that these improvements can bring closer the auto-
mated spatio-temporal detection of a broad range of social interactions in un-
constrained video material. This will allow for the automated analysis of TV
footage and web videos. Moreover, we aim at the application of our work in ded-
icated social surveillance settings such as in public meeting places and elderly
homes.
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in movies. In Proceedings International Conference on Image Processing (ICIP),
pages 3003–3007, 2013.

13. A. Patron-Perez, M. Marsza lek, I. Reid, and A. Zisserman. Structured learning
of human interactions in TV shows. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 34(12):2441–2453, 2012.

14. R. Poppe. A survey on vision-based human action recognition. Image and Vision
Computing, 28(6):976–990, 2010.

15. M. Raptis and L. Sigal. Poselet key-framing: A model for human activity recog-
nition. In Proceedings Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2650–2657, 2013.

16. M. S. Ryoo. Human activity prediction: Early recognition of ongoing activities from
streaming videos. In Proceedings IEEE International Conference on Computer
Vision (ICCV), pages 1036–1043, 2011.

17. M. S. Ryoo and J. K. Aggarwal. UT-Interaction Dataset, ICPR contest on semantic
description of human activities (SDHA). http://cvrc.ece.utexas.edu/SDHA2010,
2010.

18. M. S. Ryoo and J. K. Aggarwal. Stochastic representation and recognition of
high-level group activities. International Journal of Computer Vision (IJCV),
93(2):183–200, 2011.

19. C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM
approach. In Proceedings International Conference on Pattern Recognition (ICPR),
pages 32–36, 2004.

20. Y. S. Sefidgar, A. Vahdat, S. Se, and G. Mori. Discriminative key-component
models for interaction detection and recognition. Computer Vision and Image
Understanding (CVIU), 135:16–30, 2015.
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