
1

Semantics of interoperable and
outsourced information systems

H. Balsters G.B. Huitema

University of Groningen

Objectives

Establishing correctness criteria for service
delegation: How do we validate that the service

has eventually been outsourced correctly?

(Semantics of service delegation)

Context

•Businesses can change their business structure by unbundling
drastically into separate companies or, on the other end of the
spectrum, by smoothly delegating (or outsourcing) some of their
business processes to other more specialized parties.
•We concentrate on conceptual modeling and semantics of
outsourcing in information systems.
•Outsourcing in the context of information systems will be defined as
delegating a part of the functionality of the original system to an
existing outside party (the supplier).
•Such functionality typically involves one or more operations (or
services), where each operation satisfies certain input- and output
requirements.

Methods (1)

•Outsourcing requirements will be defined in terms of the ruling service
level agreements (SLAs).
•We provide a formal means to enabling a check that the outsourcing
relationship between outsourcing party and supplier, determined by a
SLA, satisfies specific correctness criteria.
•These correctness criteria are defined in terms of consistency and
completeness between the operation to be outsourced and the
operation offered by the supplier.
•Our correctness criterion will concern mappings between an outsourcer
schema and a supplier schema, and will address both semantical and
ontological aspects pertaining to outsourcing.

Methods(2)
•Our analysis is performed within the modeling framework based on
the UML/OCL formalism
•In particular we offer detailed specifications of so-called exact views
on the information systems of both parties engaged in the outsourcing
process.
•These exact views will capture the correctness criteria for outsourcing
of operations.

Limitations
Virtual outsourcing:outsourcer usually cannot give up ownership of
data, due to existence of other services than just the delegated one
using same data

Results

A method for modelling requirements for IS-outsourcing. Our approach
offers formal specifications that can prove their value in the setup and
evaluation of outsourcing contracts.

2

Conclusions
•We have to conceive mappings between outsourcer and supplier: get
common format for data and operations (data and operation
extraction/exchange)
•We have to align constraints on outsourced service between outsourcer
and supplier (match pre- & post-conditions)
•Successful alignment consitutes basis for successful validation of
outsourcing

Implications
•Matching initiates negotiation process between outsourcer and supplier
(alignment by weakening/strengthening of constraints)
•Alignment process can guide setup and evaluation of outsourcing
contracts

METHODS (delegating IS-functionality)

Outsourcer:
•Isolate operation O in source company to be delegated
•Determine relevant attributes, relations, constraints and auxiliary operations
in definition of operation O
•This material represents outsourcer view of O

Supplier:
•Offer supplier view with an operation O’ having a pre-condition that always
rejects objects that are rejected by O
•Post-condition of O’ should never offer results contradicting post-condition
of O

Alignment:
Typically, an outsourcer (Source) is roaming for a supplier (Target) with
compliant pre/post-conditions

Abstract implementation principle :

constructing an ω-schema

(op2 implements op1):

{pre1} op1 {post1} (intended SLA outsourcer)

{pre2} op2 {post2} (intended SLA supplier)

Negotiation means negotiation on pre- and post-conditions; i.e. on
strengthening/weakening

Views are used as virtual representatives

of parts of existing systems

•We construct a view on top of the corresponding IS.

•This view will be exact: this means that it always has a unique inverse.

•This way we cannot only query, but also update through this view
(Abiteboul/Vianu-95, Balsters-04). Updates can be implemented using so-
called IN STEAD OF- triggers, in the case of relational databases.

•Views in UML/OCL can be depicted by derived classes (Warmer/Kleppe-
03, Balsters-03).

•Exact views are constructed through Ψ-maps (Ψ stands for
preservation of system integrity; Balsters-04).

SM

/SV
(pure data)

/SV’
(σ1-constraint +

delegated operation)

TM

/TV
(pure data + Aux-Classes

+ Aux-operations)

/TV’
(σ2-constraint +
specification of

outsourced operation)

Outsourcing System

(Source)

Supplier System

(Target)

ψ0 Ψ0’

Ψ1

ψ3
ψ2

Ω

The assignment

Calculate the net salary of a given set of employees on the basis of

•The present date
•The employee’s function
•The employee’s age
•The number of hours an employee works
•The initial date of employement
•The employee’s department
•The employee’s monthly bonus

Also give a report describing all amounts deducted from the employee’s
gross salary

3

Calculate the net salary of an employee

Man Employee Department*

/SalView

date
function
age
hours
employedSince
depNm
manager-id
bonus – monthly bonus

calcNetSal:Integer

*

Ψ0

Contract specifications (minimal SLA):

context /SalView::CalcNetSal(date:Date): Integer

pre: --none

post: age>40 implies result>3000 and

result < (self.manager).date.calcNetSal and

depNm=`toy’ implies result<4000

/TV’

gross-sal
/netSal: integer

TV -- including Employee shadow data

empid’ -- internal employee identifier
date’
function’
age’
hours’
employedSince’
depNm’
manager-id’
gross-sal’

extraPayment’ --monthly, fixed
mbonus’ -- monthly, can change periodically
abonus -- anually, fixed

pensionFundOp
taxesOp
healthInsuranceOp
vacationSavingsOp
savingsAccountOp
calcNetSalOp

/SV
Ψ2

TAX-auxPF-aux

HI-aux Grosssal-aux

Ψ3

Existence of a ψ-map like ψ3 is necessary for 3 reasons:

1. ψ3 maps object data from TV’ to SV’ solving data extraction
problems (homonyms, sysnonyms, conversions etc.) in the transition
from the target system to the source model.

2. ψ3 maps object data from TV’ to SV’ solving data reconciliation
problems (constraint resolution) in the transition from the target
system to the source model.

3. We have to ensure that each object in the set of instances of the
target system corresponds to exactly one (combination of) object(s) in
the source system, and vice versa.

(The same holds for each of the ψ-maps involved. Only in this way can
we freely, and unambiguously move between the source and the target
systems.)

How does negotiation work in this process of
constructing ω-schemas?

Let’s look again at the Abstract Implementation Principle (constructing an
ω-schema)

(op2 implements op1):

{pre1} op1 {post1} (intended SLA outsourcer)

{pre2} op2 {post2} (intended SLA supplier)

Negotiation is directed at strengthening and/or weakening of pre- and post-
conditions

• “Okay, we would like to cater to all of your employees, but we can only
deal with your administrative personnel”
• “We can’t check all of your constraints pertaining to salary specification,
but only some of them”

We now have a choice:

•The outsourcer can consider weakening his demands:

- Pre1’ will state that we only deal with administrative personnel

- Post1’ will state that only a subset of the constraints are gauranteed

•The supplier can consider strengthening his facilities:

-Pre2’ will state that a larger category can be dealt with than only administrative personnel

-Post2’ will include a larger category of constraint checks than those found in Post2

Consider the case that the supplier fully wins the negotiation,

forcing the outsourcer to weaken his demands ...

4

Before negotiation:

(Dom1, pre1) (Result1, post1)

(Dom2, pre2) (Result2, post2)

After negotiation (strengthening the pre- and weakening the post condition):

(Dom1, pre1) (Result1, post1)

⊇ ⊆

(Dom1’, pre1’) (Result1’, post1’)

(Dom2’, pre2’) (Result2’, post2’)

⊆ ⊇

(Dom2, pre2) (Result2, post2)

Typically, domains will
shrink and result
constraints get weaker

Why does formalizing the negotiation
process help?

Formalization:

•Helps to understand

•Facilitates analysis (consistency, completeness)

•Paves the way to tool support

•Beneficial for checking ω-schemas (since this is non-trivial)

There is a whole suite of outsourcing agents!

1. Business SLA: outsourcing agent (OA), supplier agent (SA)

- technical (our example)

- non-technical: costs, delivery time, penalties

2. Design SLA: OA-business (OAB = SA), SA-design (SAD)

3. Implementation SLA: OA-design (OAD), SA-implementation (SAI)

OA
OAB

(S/O)AD

SAI

ω0
ω1

ω2ω

Each ω abides to the
abstract implementation
principle!

Synergy between the agents translates to
composition of the ω-schemas on the three

different agent levels!

Research issues

1. The relation between design and implementation in IS-context is already
well-documented and can be considered as more or less traditional

2. Our research up till now has its focus on the relation between (external)
business and (external) supplier, and also between (internal) business
and (internal) design – albeit that we have confined ourselves to the
technical issues pertaining to a SLA). New research could be directed at
non-technical issues, and especially in the ω-relation between (external)
business and (external) supplier

3. Possibly UML/OCL is sufficiently equipped to perform the job, but maybe
we need something more expressive (like ORM+) to specify business
needs (specified as business rules), and also to validate correctness of
these business rules (did the information analyst correctly understand
the rules he obtained from the domain expert?)

