

TUDelft

Table 2. Design	Evaluation Methods
1. Observational	Case Study: Study artifact in depth in business environment
	Field Study: Monitor use of artifact in multiple projects
2. Analytical	Static Analysis: Examine structure of artifact for static qualities (e.g., complexity)
	Architecture Analysis: Study fit of artifact into technical IS architecture
	Optimization: Demonstrate inherent optimal properties of artifact or provide optimality bounds on artifact behavior
	Dynamic Analysis: Study artifact in use for dynamic qualities (e.g., performance)
3. Experimental	Controlled Experiment: Study artifact in controlled environment for qualities (e.g., usability)
	Simulation - Execute artifact with artificial data
4. Testing	Functional (Black Box) Testing: Execute artifact interfaces to discover failures and identify defects
	Structural (White Box) Testing: Perform coverage testing of some metric (e.g., execution paths) in the artifact implementation
5. Descriptive	Informed Argument: Use information from the knowledge base (e.g., relevant research) to build a convincing argument for the artifact's utility
	Scenarios: Construct detailed scenarios around the artifact to demonstrate its utility

eService Design and Engineering Multiplicty in research Combination of behavioral and design science required in multi-actor IS Research Theory - Empiricism Multi-disciplinary • behavioral, organizational, economics, policy/regulation, and engineering sciences • Multi-theory Multi-method Multi-actor perspective: producers (services value web) as well as consumers Multiple design objects Multi-trait Multi-level Methodologies, tools, Architectures, web services, components Explicit Value driven Multi-moment Reliable, secure, trust, universally accessible Goal oriented Theory - Practise Multiple perspective: behavioral social science (hypothesis based) Process approach - Iterative multi-method design and evaluation approach and design (engineering) approach : Action research Focus on DESIGN, adoption, implementation, use and effect of IS in and between organizations . **T**UDelft **t**UDelft

Challenges for the IS community Relevance and impact through large multi-disciplinary projects Socio-technical system knowledge acquisition through combined behavioral and design research Theory on design as process, on design methodology, and on design as artifact