

VR-WISE: Conceptual Modeling for Virtual Reality

Prof. Dr. Olga De Troyer WISE Research Group Vrije Universiteit Brussel

VR-WISE: Conceptual Modeling for Virtual Reality

- Context
- Motivation

- Cheaper and faster hardware
- Dedicated tools
 - Authoring tools
 - 3D Studio Max, Virtools, Google SketchUp, ...
 - Application toolkits (programming libraries)
 - VR Juggler, Java3D, OpenSceneGraph, ...
 - Engines
 - AVOK, Open Dynamic Engine (ODE), Panda 3D, ...
 - Players
 - Octaga, Flux, ...

Second Life

Google Earth

- Virtual Reality on the Internet/Web
 - Increased bandwidth
 - VR standards for the Web
 - VRML, X3D
 - New Web technology, e.g., Ajax3D
 - Increased availability of 3D content
 - e.g., Google 3D Warehouse

Universiteit Developing a VR application

VR-WISE EIS conference 2007 | page 7

Developing a VR application

- Requires considerable VR
 background knowledge
- No systematic development
 process
 - Informal design phase
 - Lack of methods
 - Lack of abstraction mechanisms
- Expensive
- Time consuming
- A lot of mismatches

VR-WISE: Conceptual Modeling for Virtual Reality

- Context
- Motivation
- Objectives of the research
- Approach

- To open the development of VRapplications to a broader audience
- To allow a domain expert to be more involved in the design of a VR application
- To reduce the overall development time and cost

VR-WISE approach

- Introduction of a Conceptual Design phase
 - High-level intuitive descriptions using the terminology of the application domain
 - Free from VR-implementation details
- Allows
 - Abstracting from implementation issues
 - Reduces the complexity
 - No deep VR knowledge needed
 - Domain experts may be involved
 - Easier and earlier communication with stakeholders
 - Earlier detection of design errors

Model-based development

VR-WISE Overview

Graphical Conceptual Modeling Language

- High-level concepts for modeling
 - Concepts and Objects
 - Including complex connected objects by means of joins
 - Positioning of concepts/objects
 - Behavior of concepts/objects
 - (Interaction)

Concepts and Objects

Concepts

- Domain concepts
 - Building, Pine Tree, Road Sign, Streetlight, Fountain, ...
- Properties
 - Visual: high, depth, material, ...
 - Non-visual: price, owner, ...

Objects Instances of concepts several Pine Tree instances PineTree:myPineTree

VR-WISE EIS conference 2007 | page 15

Positioning Objects

Spatial relations

- Objects can be positioned relative to each other by means of spatial relations instead of using exact coordinates
 - in-front-of, above, left-of, ...
- More intuitive for non-VR-experts

Example:

my red car is 1 meter in front of my house

Positioning Objects

- Orientation relations
 - To orient objects relative to each other by means of their sides
 - *left, right, front, back, top, bottom*

Example:

my red car's right side is oriented towards the front side of my house

Complex Connected Objects

- Objects can be connected in different ways
 - Connection axis relation

- Connection surface relation

Complex Connected objects

- Constraints may exist on connections
 - E.g., Hinge constraint for the door

- Or a Joystick constraint

VR-WISE EIS conference 2007 | page 19

Universiteit Brussel Complex Object - Example

Complex Object - Example (2)

- Specifying behaviors
 - Action-oriented approach
 - Independent from the static properties of the objects and independent of how the behavior is invoked
- Specifying the invocation of behaviors
 - Using events

- Specifying behaviors
 - Primitive behaviors (actions)
 - To change the position or the orientation of an object
 - move, turn, roll, resize, position, orientate ...

- Primitive behaviors (actions)

- To change the appearance of an object at runtime
 - E.g., transform, construct, destruct, group, ungroup, disperse, combine ...

- Complex behaviors by combining behaviors by means of operators
 Examples:
 - Temporal operator for synchronizing behaviors

Lifetime operator

Behavior Invocation

- Events are used to specify the triggering of behaviors
 - Time Event
 - Context Event

OnProxy (5 m)

- User Event (user interaction)
- Collision Event (inter-object interaction)
- Constraint Event

Universiteit Brussel More complex behaviors

More complexity can be expressed by means of a scripting language

Forward (d m)	
\speed 'fast'	
\repeat 3 time(s)	
variable assign 1 to i; assign 0	to
\before assign 5 * i to d	
\after increment i by 1	

Behavior Definition - Example

Mr. Phillip's famous back kick.

Behavior Definition - Example

Mr. Phillip's famous back kick.

VR-WISE EIS conference 2007 | page 29

Behavior Definition - Example

Mr. Phillip's famous back kick.

VR-WISE EIS conference 2007 | page 30

Generated Behavior

VR-WISE: Conceptual Modeling for Virtual Reality

- Context
- Motivation
- Objectives of the research
- Approach
- Tool support

EIS conference 2007 | page 36

• Ontology-based

- Domain ontology to describe the world
 - Allows to use terminology of application domain
- Ontologies as internal knowledge representation

Semantic Virtual Worlds

- Use of domain ontologies allows to capture real world semantics
 - Semantic search engines
 - Semantic annotations

VR-WISE: Conceptual Modeling for Virtual Reality

- Context
- Motivation
- Objectives of the research
- Approach
- Tool support
- Conclusions
- Current & future work

- Conceptual design phase in the development process of VR application
 - More people can create a VR application
 - More people can be involved
 - Domain experts; other stakeholders
 - Easier to satisfy the requirements and the expectations of stakeholders
 - Model-based
 - Code can be generated
 - Less expensive and faster
 - Ontology-based
 - Easier to incorporate semantics
 - More usable, allows for semantic search, semantic annotations

Current and future work

- Extending the set of modeling concepts:
 - More primitive behaviors, e.g., coloring, sound, ...
 - Mechanism for combining connections
 - More constraints, like constraints on behavior
 - Cameras, viewpoints, light sources, shadows, ...
 - Interaction-controlled behavior
 - Avatars
- Current work
 - Scenarios
 - Patterns for modeling behavior/the scene
 - Semantic annotations for existing worlds

Vrije Universiteit Brussel More information

Part of this work has been done in the context of the OntoBasis project and the VR-DeMo project (IWT)

See http://vr-wise.vub.ac.be