

Using TROPOMI observations to constrain large scale CO emissions

32nd international TM5 meeting, May 2022

Johann Rasmus Nüß¹

N. Daskalakis¹, F. G. Piwowarczyk¹, A. Gkouvousis^{2,3}, O. Schneising¹, M. Buchwitz¹, M. Kanakidou^{1,2,3}, M. C. Krol^{4,5}, and M. Vrekoussis^{1,6,7}

¹IUP-UB; ²ECPL; ³C-STACC; ⁴MAQ-WUR; ⁵IMAU; ⁶MARUM; ⁷CARE-C

1 Objective and Motivation

2 Setup

- Stations
- Emissions
- 4 Summary & Outlook

Objective and Motivation

Objective

Optimizing carbon monoxide emission estimates in the Northern Hemisphere through inverse modeling based on high-resolution satellite observations

Johann Rasmus Nüß¹, Nikos Daskalakis¹, Fabian Günther Piwowarczyk¹, Angelos Gkouvousis^{2,3}, Oliver Schneising¹, Michael Buchwitz¹, Maria Kanakidou^{1,2,3}, Maarten C. Krol^{4,5}, and Mihalis Vrekoussis^{1,6,7}

¹Institute of Environmental Physics (UP-UB), University of Bremen, Bremen, Germany ²Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Heraklion, Greece ²Center for the Study of Air Quality and Climate Change (C-STACC), Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece ⁴Meteorology and Air Quality, Wageningen University and Research, Wageningen, the Netherlands ⁵Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, the Netherlands ⁶Center of Marine Environmental Science (MARUM), University of Bremen, Germany ⁷Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus

Correspondence: Rasmus Nüß (rasmus.nuess@uni-bremen.de); Nikos Daskalakis (daskalakis@uni-bremen.de); Mihalis Vrekoussis (mvrekous@uni-bremen.de)

Abstract.

Carbon monoxide in the atmosphere adversely affects air quality and climate. In this study, we attempt to optimize current bottom-up carbon monoxide emission estimates for the second half of the year 2018 on a global scale with a focus on the Northern Hamilaham themath that to down surrouch of images modeling. Observations from the TDYDPOMI statilitä in

Manuscript in preparation

How well can we constrain CO with just TROPOMI?

Setup

■ Code at revision 899b16 from "official" repository

 $\rightarrow~\mbox{Extended}$ to handle new input

- Code at revision 899b16 from "official" repository
 - $\rightarrow~\mbox{Extended}$ to handle new input
- Production (no daily cycle):

- Code at revision 899b16 from "official" repository
 - $\rightarrow~$ Extended to handle new input
- Production (no daily cycle):
 - Biomass burning: FINN2.4+VIIRS with IS4FIRES profiles

- Code at revision 899b16 from "official" repository
 - $\rightarrow~\mbox{Extended}$ to handle new input
- Production (no daily cycle):
 - Biomass burning: FINN2.4+VIIRS with IS4FIRES profiles
 - Anthropogenic: CMIP6 projections

- Code at revision 899b16 from "official" repository
 - $\rightarrow~$ Extended to handle new input
- Production (no daily cycle):
 - Biomass burning: FINN2.4+VIIRS with IS4FIRES profiles
 - Anthropogenic: CMIP6 projections
 - Secondary: TM5-MP with MOGUNTIA chemistry run for 2018 (Myriokefalitakis et al. 2020)

- Code at revision 899b16 from "official" repository
 - $\rightarrow~$ Extended to handle new input
- Production (no daily cycle):
 - Biomass burning: FINN2.4+VIIRS with IS4FIRES profiles
 - Anthropogenic: CMIP6 projections
 - Secondary: TM5-MP with MOGUNTIA chemistry run for 2018 (Myriokefalitakis et al. 2020)
- Transport: ECMWF erai meteorology (Dee et al. 2011)

- Code at revision 899b16 from "official" repository
 - \rightarrow Extended to handle new input
- Production (no daily cycle):
 - Biomass burning: FINN2.4+VIIRS with IS4FIRES profiles
 - Anthropogenic: CMIP6 projections
 - Secondary: TM5-MP with MOGUNTIA chemistry run for 2018 (Myriokefalitakis et al. 2020)
- Transport: ECMWF erai meteorology (Dee et al. 2011)
- Loss: reaction with OH based on Spivakovsky climatology scaled by 0.92 (Huijnen et al. 2010) + dry deposition

- Code at revision 899b16 from "official" repository
 - \rightarrow Extended to handle new input
- Production (no daily cycle):
 - Biomass burning: FINN2.4+VIIRS with IS4FIRES profiles
 - Anthropogenic: CMIP6 projections
 - Secondary: TM5-MP with MOGUNTIA chemistry run for 2018 (Myriokefalitakis et al. 2020)
- Transport: ECMWF erai meteorology (Dee et al. 2011)
- Loss: reaction with OH based on Spivakovsky climatology scaled by 0.92 (Huijnen et al. 2010) + dry deposition
- Spin-up inversion 2018-01-01 2018-07-01
- Main inversion 2018-06-01 2019-01-01

- Code at revision 899b16 from "official" repository
 - \rightarrow Extended to handle new input
- Production (no daily cycle):
 - Biomass burning: FINN2.4+VIIRS with IS4FIRES profiles
 - Anthropogenic: CMIP6 projections
 - Secondary: TM5-MP with MOGUNTIA chemistry run for 2018 (Myriokefalitakis et al. 2020)
- Transport: ECMWF erai meteorology (Dee et al. 2011)
- Loss: reaction with OH based on Spivakovsky climatology scaled by 0.92 (Huijnen et al. 2010) + dry deposition
- Spin-up inversion 2018-01-01 2018-07-01
- Main inversion 2018-06-01 2019-01-01
- Zoom over northern hemisphere

Zooming setup and observations

NOAA flasks

global TROPOMI observations

TROPOMI observations

- TROPOspheric Monitoring Instrument onboard of Sentinel-5 Precursor
- Daily global coverage
- Local overpass time 13:30
- High resolution (up to $7 \times 7 \text{ km}^2$)
- Gridded to 0.5° × 0.5° (as shown during last meeting following Miyazaki et al. 2012)
- Especially sensitive to troposphere/boundary layer

3 inversions with different observational input (3 more in manuscript not shown here)

Inversion	Observations		
Inversion	satellite	flasks	
reference	gridded	yes	
satellite only	gridded	no	
stations only	none	yes	

Results

Good fits in most places

Good fits in most places

Good fits in most places

High northern latitudes problematic, southern ok

High northern latitudes problematic, southern ok

stations		roforonco	satellite	station
		reference	only	only
الم	prior	21.91	21.91	21.91
all	posterior	3.61	9.12	3.26
$< 55^{\circ} N$	prior	24.33	24.33	24.33
	posterior	3.59	7.84	3.35

stations		reference	satellite only	station only
	prior	21.91	21.91	21.91
all	posterior	3.61	9.12	3.26
excluding	prior	22.21	22.21	22.21
ASK, HPB, OXK	posterior	3.36	7.62	3.14

stations		roforonco	satellite	station
Stations		rererence	only	only
all	posterior	3.61	9.12	3.26
$< 55^{\circ} N$	posterior	3.59	7.84	3.35
excl. ASK, HPB, OXK	posterior	3.36	7.62	3.14

stations		u o fo u o u o o	satellite	station
		reference	only	only
all	prior	21.91	21.91	21.91
	posterior	3.61	9.12	3.26
$< 55^{\circ} N$	posterior	3.59	7.84	3.35
excl. ASK, HPB, OXK	posterior	3.36	7.62	3.14
$< 55^{\circ}$ N and excl.	prior	24.92	24.92	24.92
ASK, HPB, OXK	posterior	3.27	5.80	3.20

Anthropogenic and biomass burning not shown

Large decrements over India and China

- Asia reduced by up to 75 %
- Some increments appear co-located to stations

- Without satellite smaller increments overall
- Lower emissions at high north latitudes, higher in Asia
- Clear co-location for ASK, HPB, OXK, EIC, but...

... increments near some stations also found with only satelliteBroader patterns reserved

Summary & Outlook

 Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar

- Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar
- $\rightarrow~0.5^{\circ}\times0.5^{\circ}$ superobservation as input for inversion with NH in $3^{\circ}\times2^{\circ}$

- Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar
- $\rightarrow~0.5^{\circ}\times0.5^{\circ}$ superobservation as input for inversion with NH in $3^{\circ}\times2^{\circ}$
- $\rightarrow\,$ CO inversion driven only by satellite appears feasible

- Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar
- $\rightarrow~0.5^{\circ}\times0.5^{\circ}$ superobservation as input for inversion with NH in $3^{\circ}\times2^{\circ}$
- $\rightarrow\,$ CO inversion driven only by satellite appears feasible
 - Scientific paper for Californian (and Siberian?) fires also in the making

- The computations were performed on the HPC cluster Aether at the University of Bremen, financed by DFG in the scope of the Excellence Initiative.
- The PhD position is paid for by the University Bremen.
- \blacksquare ... and of course thank You for your attention

Hard to see differences with log-scale

Almost no changes through gridding

The easy approach

- Set up global, regular grid
- Aggregate any observations in a grid cell into a single superobservation based on the location of their center
- How to weigh the observations?

Area-weighting

- Calculate intersection areas w_i of footprints ŷ^o_i with each grid cell
- Get area-weighted mean
- Can also be applied to averaging kernel, pressure levels, time, and a-priori profile...
- ... but not to the observational error

- Observations can contribute to multiple grid cells
- Inflate their error by $\sqrt{\frac{A_i}{w_i}}$ to keep their weight in the cost function constant, A_i is the total footprint area

$$\sigma = \frac{\sum_{i=1}^{m} \sqrt{\frac{A_i}{w_i}} w_i \sigma_i^o}{\sum_{i=1}^{m} w_i} = \frac{\sum_{i=1}^{m} \sqrt{A_i w_i} \sigma_i^o}{\sum_{i=1}^{m} w_i}$$
(2)

- Many independent observations reduce error by \sqrt{n}
- Adjacent satellite observations not independent
- Correlations in errors form assumptions about albedo etc.
- Eskes et. al. 2003 suggest $\sigma_o = \sigma \sqrt{\frac{1-c}{n} + c}$
- Miyazaki et. al. 2012 set c = 15%

- Handle grid cells on partly covered by observations
- introduce factor $f_{rep}(\alpha)$ based on the relative coverage $0 \le \alpha \le 1$
- Estimate f_{rep} by artificially reducing coverage and comparing the resulting superobservations
- \blacksquare We aggregate $\mathit{f}_{\mathrm{rep}}$ into bins of 1 % coverage each
- Only use well covered cells, Miyazaki et. al. 2012 used $\alpha > 90$ %, we use $\alpha > 50$ %, to accommodate coarser grids

Representativeness error - intra-annual variations

- f_{rep} seems to weakly depend on season, likely due to differences in land mass between NH and SH
- daily variation has similar magnitude \rightarrow use one consistent $f_{\rm rep}$ for the whole year

Representativeness error - latitudinal variations

 Magnitude of f_{rep} seems to strongly depend on latitude, likely linked to distribution of oceans and grid cell size

Representativeness error - latitudinal variations

- Magnitude of f_{rep} seems to strongly depend on latitude, likely linked to distribution of oceans and grid cell size
- Shape of $f_{\rm rep}$ appears to be unaffected by latitude

- Magnitude of f_{rep} seems to strongly depend on latitude, likely linked to distribution of oceans and grid cell size
- Shape of $f_{\rm rep}$ appears to be unaffected by latitude
- \rightarrow Calculate global $f_{\rm rep}(\alpha)$
- \to Recalculated $f_{\rm rep}$ in 12° latitude bands to get scaling factor $\bar{f}_{rep}(\phi)$ to the global curve

$$f_{rep}(\alpha, \phi) = \bar{f}_{rep}(\phi) \cdot f_{rep}(\alpha)$$
(3)

 Representativeness error for a specific coverage and latitude, based on the area-weighted observation:

$$\sigma_r = f_{\rm rep}(\alpha, \phi) \cdot \hat{y}_o. \tag{4}$$

 Total superobservation error by combing inflation through representativeness error and deflation through number of observations:

$$\sigma_s = \sqrt{\sigma_o^2 + \sigma_r^2}.$$
 (5)