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TMS meteo pipeline

gridded sfc fields,
gridded 3D fields,
spectral 3D fields

ERAS

 EcFs

. e

TM meteo:

1x1 x L137,
coarsened versi

.

\ 4

TM5
"meteo production”

S

Methane mixing ratio,
2022-12-307T18, ML34 ~ 1000 hPa
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local storage

Model cutput ws flask measurements,
South Pole, latitude = -30.0, longitude = -24.8
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TMS meteo pipeline

ERAS B

S~

/:/_\\ Could we generate the meteo
~— 1 for TM5 with an Al based emulator?
e fast

|

flexible in resolutions

Methane mixing ratio,
2022-12-307T18, ML34 ~ 1000 hPa

2000 2100 2200 2300
Mixing ratio [ppb]

less data needed
R

Al meteo
emulator

smaller
storage
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Temperature vs ERAS, 850 hPa

—— IFS HRES
GraphCast

3.5

RMSE [K]

Al based global weather emulators

Not based on physics, but trained on long time series of meteorological data

240

144 168 192 216

* When trained, extreme fast (seconds on a GPU), and very good statistics I S —
. . . Lead time [hours]
« ECMWEF joined the arena with AIFS
EECMWF|50

Access to forecasts

About our forecasts
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Al based global weather emulators | S

Criteria to select an appropriate Al-weather-model to generate input for TM5:

* Feasibility: .
Can we get it running on our local server? .

* Vertical resolution:
Most emulators have 13 or 37 (pressure) levels

Al forecasting models
Feasibility

* Output parameters: e N
All have pressure, temperature, horizontal wind. o fourcasne
But also vertical velocity? Or even mass fluxes as used in TM5?

* Performance:
Quality when compared to ERA5?

Pressure lgyvels ormance

* Future proofing: |
Likely we would use ECMWF's AIFS, but that is not available yet. \

{
\ /
Which emulators are already supported by ECMWF, or comparable to AIFS?
Model Introduction | Architecture Vertical resolution | Timesteps | N.variables
PanguWeather | 2022 3D transformer 13 PL 1 hour 9 A < oroo
FourCastNet 2022 13 PL 6 hour 13 — —

Adaptive Fourier Neural Operator

GraphCast 2023 Graph Neural Network 37PL 6 hour 11 G le's "G hCast" sel d
FuXi 2.0 2024 U-Transformer 13 PL 1 hour 28 oogle's “GraphCast™ selected as
FengWu 2023 Cross-modal fusion Transformer | 37 PL 6 hour 9 most feasible, most all-round emulator

AIFS 2024 Graph Neural Network 13 PL 6 hour 13 =




Google's GraphCast

a) Input weather state b) Predict the next state c¢) Roll out a forecast e Trained on ERAb data:
« publicly available data from Climate Data Store
* horizontal resolution: 0.25°

« vertical: 37 pressure levels

« analysis fields (data assimilated)

 Source:

* python package

f) Decoder
« configuration file (neural network weights)
* Input:

« 2 data sets for -6 and 0 hour
(subsets of ERAS, or GraphCast generated sets)

* Output:

« same grid/levels as input set
m° M!
- forecast over 6 hour

m innovation
for life




How well does our GraphCast copy emulate ERAS?

'—"‘ECMWF

I".I'IARS

(’“’-f-
3

« Compared GraphCast forecasts with ERAS analysis:

180°

120°W 60°W

00

240 260 280

Temperature [K]

30°N

0°
30°S
60°S

180°

B soenp

Difference GC 6 hour forecast - ERA5S
temperature at 1000 hPa 2022-01-03T18

Example: temperature at 1000 hPa

Difference GC 24 .our forecast - ERA5
temperature at 1000 hPa, 2022 01-03T18

- N s
}I = . v . ‘\!‘?Z o
120°W 60°W 0° 60°E 120°E 180°30° 120°W 60°W 0° 60°E 120°E 180°
-4 29 0 2 4 -4 -2 0 2 4

Temperature [K]

Temperature [K]

* Differences for 6 / 24 /| 72 hour forecasts

60°N [=

30°N

0° |
30°s |
60°S |[r

180°

* initialized from ERAS analysis, roll-out over 72 hours

« Differences increase with forecast step, but remain small

Difference GC/2.1our forecast - ERA5
temperature at 1000 hPa, 2022- 01 03T18

120°W 60°W 60°E 120°E 180°

Temperature [K]



Pressure [hPa]

How well does our GraphCast copy emulate ERAS?

& ECMWF

3

MARS —
I (.

ERAS5, longitudinal mean of temperature,

10°

10!

103

2022-01-03T18

=50

0 50

Latitude

« Compared GraphCast forecasts with ERAS analysis:

* initialized from ERAS analysis, roll-out over 72 hours

* Example: temperature zonal mean

300 « Differences for 6 / 24 / 72 hour forecasts
280 » Differences in stratosphere become rather large
260g
w " " " " "
2 GraphCast training is less constrained for higher levels!
240 @
3
220" ; ; Temperature difference GC 24 hour - ERA5, Temperature difference GC 72 hour - ERA5,
T ool ereme 50990503118 longitudinal mean, 2022-01-03T18 longitudinal mean, 2022-01-03T18
200
10° 4 10° 4 A 4
F H N, _ ) T = ,
: g 2§
& 1024 -22 a 102 4 —2§ a
-4 -4 ’ -4
103 . T T 3d 3 -
S0 0 s TS 6 s TS0 6 s
Latitude

Latitude Latitude

Temperature [K]



How well could GraphCast output be converted into TMS input?

TM5 meteo input (for CAMS CH4 inversions):

horizontal resolution 1°x1°
34 hybride model layers

3D fields: temperature, humidity,
horizontal mass fluxes, vertical mass fluxes

mass fluxes computed from spectral vorticity/divergence

Preprocessing of GraphCast output needed for TM5:

horizontal averaging [easy]

vertical mapping: from 37 pressure levels,
to 37 hybride model layers (newly defined!)

variable conversion:
* horizontal mass fluxes [rather easy]

» vertical mass fluxes [complicated]

€S ECMWF

» Preprocessing |
A

]

(

Preprocessing
—

-

//"

-\.

Model level

convarsion

1

Massfiux
conversion

™5
34 ML

innovation
for life
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How well could GraphCast output be converted into TMS input?

Temperature, humidity, and horizontal mass fluxes
for TM5 could be represented rather well:

At some locations, mapping from pressure levels to

model layers is inaccurate

—> for 3D temperature, fixed using 2m-temperature

Vertical flux has rather large errors:

Derived from pressure tendency, vertical velocity,
horizontal velocities, and pressure gradient:

P = _l"f” '. +@-er E‘P| dipdA cosd

Result is noisy ...

Reference data, vertical massflux,
ML36.5, 2022-01-01T06

60°N
30°N

30°S
60°S

-20 -15 -1.0 -05 00 05 10 15 20
Vertical massflux [kg/s] le8

Postprocessed data, vertical massflux,
ML36.5, 2022-01-01T06

60°N

30°N |°
0°

30°S

60°S
180 120°W 60°E 120°E 180°
-20 -15 -1.0 -0.5 00 05 1.0 15 20

Vertical massflux [kg/s] le8

Delta postprocessed - reference data,
vertical massflux, ML36.5, 2022-01-01T06

60°N ¥

30°N [ NG

0° | V N
siive )
60°s | 1+

180° 120°W 60°W 0° 60°E  120°E 180°

Pressure [hPa]

10-14

100 3

101 4

1024

103 4

Pressure vs vertical massflux,
latitude = 0.5, longitude = 0.5

- Reference vertical massflux
Postprocessed vertical massflux

-1.5 -=1.0 -0.5 0.0 0.5 1.0
Vertical massflux [kg/s] le8
innovation 10
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TMS simulations of CH,

Four different pipelines for TMS simulations:

C ECMWF

e

L
>

Reference
- \ Impact of change from 34 to

37 model layers

e - neglecatble
> 37 ML MNew model levels

\ Impact of using

e PL-ML, [var] GraphCast-like variables ?
I e > Prepmcesslng 37 ML ERAS

Go= "N\ Impact of using

® hour GC

Test configuration:

e

« 1°x1° grid, 37 model layers,

« simulation over 2022, initialized from CAMS emission optimized mixing ratios o
TNO e




CECMWF

TMS simulations of CH,

What is the impact of using meteo variables like GraphCast produces?

3
s J

- - e

3‘;’MM5L New model levels
Cﬁ"w' \

™S PL-ML, [var]
37 ML ERAS

CDS "

4 simulations, each with one new variable:
- Neglectable impact of T, Q, massflux-uv

—> Strong impact of using massflux-w

=>» Do not use the new computed vertical massfluxes yet!

Mixing ratio [ppb]

Mixing ratio [ppb]

Model output vs flask measurements,
South Pole, latitude = -90.0, longitude = -24.8

1880 -

1870 - a
A Q
New model levels E
1860 PL-ML, [T] ©
PL-ML, [q] o
1850 | PL-ML, [mfuv] Z§
PL-ML, [mfw] =

1840 - measurements

Delta model output,

Location of flask measurement stations,

South Pole and Mt. Waliguan in red

60°N

30°N

30°s

60°S

Model output vs flask measurements,
Mt. Waliguan, latitude = 36.3, longitude = 100.9

2050

2025 A

2000 A

1975 A

1950 +

Delta model output,

South Pole, latitude = -90.0, longitude = -24.8 Mt. Waliguan, latitude = 36.3, longitude = 100.9
—— PL-ML, [T] diff
10.0 1 —— PL-ML, [q] diff _
75 — PLML, [mfuvl diff | & 20
—— PL-ML, [mfw] diff | =
5.0 - 2
o 0
2.5 1 E
X
0.0 = —50 A
—2.51
2022-01-01 2022-05-01 2022-09-01 2023-01-01 2022-01-01 2022-05-01 2022-09-01 2023-01-01
Date Date
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TMS simulations of CH,

What is the impact of using GraphCast produced forecasts?

SECMWF

[ ]

R Simulations using GraphCast forecasts with different max. steps;
3 many configurations possible ...

G
7;E_ . ™S PL-ML, [var]
Z Preecessna | LM s Time [hours] —» [ ] scinput ()6e output @ 2 hour forecast @) 36 hour forecast

1B

Y

[al

Dataset 6 -3 0 3 6 9 12 1518 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87

‘Q

innovation
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TMS simulations of CH,

RMSE [ppb]

What is the impact of using GraphCast produced forecasts?

Differences between 24h or 72h forecast
seen mainly at South Pole station:

(impact of stratosphere ?)

RMSE over all flasks is rather similar for
the various max. forecast steps:

RMSE model output vs flask measurements

20.0 A

19.9 -

19.8 4

19.7

19.6

19.5 A

19.4 4

19.3 A

0

ERAS5 + GC forecast
Reference e

an
w

0 10

20
Forecasting time [hours]

30 40 50 60 70

1880 4
< 1870 - g
2 2
2 1860 - 2
e e
o —— ERA5 =2
E 4 E
X 1850 —— 24 hour GC ®
= ——— 72 hour GC =

1840 1 ® measurements

Mixing ratio [ppb]

Model output vs flask measurements,
South Pole, latitude = -90.0, longitude = -24.8

Delta model output,

South Pole, latitude = -90.0, longitude = -24.8

34 ~—— 24 hour GC - ERA5
——— 72 hour GC - ERA5 —_
2 1 )
g
- o
01 e
o
-1 £
X
—2 =

_3 -
2022-01-01 2022-05-01 2022-09-01 2023-01-01
Date

2075 A
2050 1
2025 1
2000
1975
1950 -

1925 +—

Location of flask measurement stations,

60°N

30°N

30°s

60°S

Model output vs flask measurements,
Mt. Waliguan, latitude = 36.3, longitude =

100.9

Delta model output,

Mt. Waliguan, latitude = 36.3, longitude = 100.9

m innovation
for life
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20
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Pressure [hPa]

TMS simulations of CH,

What is the impact of using GraphCast produced forecasts?

Longitudinal mean of mixing ratio ERA5,
2022-12-31T18

24 hour GC - ERA5, 2022-12-31T18

10° 10°
©
g ‘I.
101 qL) 101 ”
3
]
a
10 102 1
103 T T T T T T T 103 T T T T T T T
-75 =50 -25 0 25 50 75 -75 =50 -25 0 25 50 75
Latitude Latitude

500 1000 1500 2000
Mixing ratio [ppb]

-150 -100 -50 0 50 100 150
Mixing ratio [ppb]

Difference longitudinal mean of mixing ratio,

Large differences in CH4 mixing ratio's in

stratosphere ...

.. but only small differences near surface.

innovation
for life
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TMS simulations of CH,

What is the impact of using GraphCast produced forecasts?

Methane mass RMSE vs data fraction

09

0.8 1
Relative error in global total CH, mass is higher
for longer forecast range ...

0.6- But this requires less data to be downloaded!

0.7

0.5- —> Trade-off between efficiency and accuracy
0.4 1
0.3 1

0.2 1

Normalised methane mass RMSE [%]

01 longer forecast range

GuD T T T T T T T T T
0 25 50 75 100 125 150 175 200 225
Data fraction downloaded [%]

NOTE: >100% since GraphCast requires 2
previous time records for a forecast ..

TO be Optlmlzed in future’ mifg?ﬂ\frgtion




Conclusions

Using Al-based meteo emulators to generate TM5 input?

Promising! This could save a lot of preprocessing/storage/slow-down ....
First tests using GraphCast to generage "ERA5"-like meteo:
Accurate at surface
Less accurate in stratosphere
* need more layers?
* Al-model should be constrained on stratosphere
Vertical velocity seems most problematic, and thus vertical fluxes in TM5
* Requires dedicated training of models?
Not tested yet: convective fluxes, diffusion coefficients

Preferably these are also put out by emulators

Run time of few seconds on GPU?
To be solved: segmentation fault

Time [hours] — [ ] ecinput (Dec output @2 nourforecast @) 36 hour forecast
Dataset -6 3 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 &7

01-01700

01-01703

Model output vs flask measurements, Model output vs flask measurements,
South Pole, latitude = -90.0, longitude = -24.8  Mt. Waliguan, latitude = 36.3, longitude = 100.9
1880 2075
—_ — 2050
g 1870 g
=3 2 2025
2 1860 ° 2
® ® 2000
2 — ERAS 2
= 1850 4 — 24nourGe  |E 1975
= =
1840 1 o —— 72 hour GC 1050

® measurements

1925 +—

Delta model output, Delta model output,

South Pole, latitude = -90.0, longitude = -24.8  Mt. Waliguan, latitude = 36.3, longitude = 100.9
3 —— 24 hour GC - ERAS 40
= 2 —— 72 hour GC-ERA5 | _,
5 o)
g 1 & 2
° 2
g o ®
o o 0
£ -1+ £
= x
s, =

=20

-3
2022-01-01 2022-05-01 2022-09-01 2023-01-01  2022-01-01 2022-05-01 2022-09-01 2023-01-01 17
Date Date




[=2]

-=— Transformer Al-DOP

5.51 =« GNN AI-DOP
o 51 GraphCast = -
w =~ Panqu p
g“-t * AIFSV021 O
Outlook § =
§3.5<
. , £25
Next: tests using ECMWF's AIFS ? ol
15 !

« Possibly more focus on all layers of the atmoshere T4 2 3 4 5 6 7 8 9 10

e ...andon (Vertical,convective) mass fluxes GRAPHDOP: TOWARDS SKILFUL DATA-DRIVEN MEDIUM-RANGE

WEATHER FORECASTS LEARNT AND INITIALISED DIRECTLY
FROM OBSERVATIONS

A PREPRINT
Atmospheric
s Chem Phys 15.1 13133, 2015 ChemlStW Mihai Alexe Eulalie Boucher Peter Lean Ewan Pinnington Patrick Laloyaux
oS . S et /201 5/ =~
www.atmos-chcn‘l-ll‘h)’s-“:s l";' 113120 an d P h y S ICS Anthony McNally Simon Lang Matthew Chantry Chris Burrows Marcin Chrust
5 10.5194/acp-15-113-283> .
':-Xj—»?:,\mhm(s',\ 2015, CC Attribution 3.0 License. Ethel Villeneuve Niels Bormann Sean Healy

Medium-Range Weather Forecasts (ECMWF)

December 23, 2024

ABSTRACT
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lata-driven, end-to-end forecast system developed at the European
er Forecasts (ECMWF) that is trained and initialised exclusively
with no physics-based (re)analysis inputs or feedbacks. GraphDOP
observed quantities - such as brightness temperatures from polar
ites - and geophysical quantities of interest (that are measured by
rm a coherent latent representation of Earth System state dynamics
pable of producine skilful oredictions of relevant weather ¢ s

Inverse modellin
satellite retrieval prod
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Thursday: online meeting with Mihai.Alexe@ECMWF about our whishlist ...
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Google's GraphCast

o Platform Solutions Resources Open Source Enterprise Pricing Search or jump to.. ° I n Sta I Iati on:

@ google-deepmind / graphcast nei o - Download Python source package
¢» Code (%) lssues 66 i1 Pull requests 4 (@ Actions [ Projects (D Security [+ Insights
[ )

Download model configuration data
e ——— (weights for neural network)

m alvarosg and mjwillson Clean up math in get_rotation_matrices_to_local coor.. BB Sef3bal- S months ago {Tj 39 Commits
« Download input data (from CDS)
docs Correct Operational GenCast name in README and some mi... 11 months ago
graphcast Clean up math in get_rotation_matrices_to_local_coordinat.. 5 months ago R
* un ...

D CONTRIBUTING.md nitial commit 2 years ago
D LICENSE nitial commit. 2 years ago
D READMEmd Correct Operational GenCast name in README and some mi... 11 months ago
D gencast_demo_cloud_vm.ipynb Move function pmap to separate cell in demo notebooks. 11 months ago
D gencast_mini_demo.ipynb Recanfigure JAX in Colab to use |latest image. 10 months ago
D graphcast_demo.ipynb Adding GenCast support. ast year
D setup.py Adding GenCast support. st year

[0 README  Au Contributing Lt Apache-2.0 license

Google DeepMind GraphCast and GenCast

This package contains example code to run and train the weather models used in the research papers GraphCast and
GenCast.

It also provides pretrained model weights, normalization statistics and example input data on Google Cloud Bucket.

Full medel training requires downloading the ERAS dataset, available from ECMWEF, This can best be accessed as Zarr

innovation
m for life 20




How well does our GraphCast copy emulate ERAS?

CECMWF
7 « Compared GraphCast forecasts with ERAS analysis:

MARS

g ' 37 PL 37 PL * initialized from ERAS analysis, roll-out over 72 hours

0.25 deg 0.25 deg
GraphCast 4)@

* normalized RMSE (divided by mean) of T/U/W for different levels
e error increases with forecast time
e error increases with altitude

 vertical velocity has rather high errors

Normalised RMSE of temperature vs Normalised RMSE of u component of wind vs
0.5 forecasting time forecasting time No {sed RMSE of vertical velocity vs forecasting time
' 150
w1000 hPa 50 4 )
0.4 { === 850 hPa 25 5
40
- 500 hPa = — 100 -
o 0.3 X 2
= — 30 - o
m) u w75 -
S 0.2 = 50 s
= o € 50 -
0.1+ 10 - 25 4
00 T T T T T T T 0 T T T T T T T 0 ' ' T T T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 21
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How well could GraphCast output be converted into TMS input?

« Temperature, humidity, and horizontal mass fluxes

Temperature vs pressure,

Temperature difference ML37 to ERA5 ML135 corrected interpolated data
for TM5 could be represented rather well: corrected interpolated data =18 Ioh =165
L Y —— Model level data
- At some locations, mapping from pressure levels to o Converted model levels
. . 30°N
model layers is inaccurate _sx0
—> for 3D temperature, fixed using 2m-temperature ’ =
0 2 9x10?
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240 24I15 25IO 25‘35 260
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TMS simulations of CH,

What is the impact of changing to 37 layers?

ng - - Ferenee \

D @ New model levels

- Neglectable impact of changing layers

Mixing ratio [ppb]

South Pole, latitude = -90.0, longitude = -24.8

Model output vs flask measurements,

1880 +
g 1870 - g
2 2
S 1860 2
© [
2 2
x 1850 1 —— Reference =
z —— New model levels =

1840 1 ® measurements
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GraphCast training

* Weights in loss-function used for training of GraphCast:

a)
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