

MATIETEEN LAITOS ETEOROLOGISKA INSTITUTET NNISH METEOROLOGICAL INSTITUTE

CH₄ flux estimates over high northern latitudes

Tsuruta Aki¹, Maria Tenkanen¹, Leif Backman¹, Tuula Aalto¹, and international collaborators

¹Finnish Meteorological Institute, Helsinki, Finland

22/10/2020 30th International TM5 meeting, 22-23.10.2020, Online

Content

- European CH₄ fluxes
 - Trends in anthropogenic sources
 - Effect of 2018 drought
- Implementation of satellite soil Freeze/Thaw data in CH₄ flux inversion
- Other activities at FMI
 - Isotope (δ^{13} C-CH₄) seasonal cycle (Vilma's presentation later)
 - Satellite inversion (TROPOMI)
 - Ethane (C₂H₆) simulations (connected to VERIFY)

European emissions

- Largest contribution from agriculture and waste sectors
- Second most from fossil fuel production and use
- Emissions from wetlands are the largest natural source

Global Methane Budget 2000–2017: regional & natural and anthropogenic source estimates

Methane source estimates for 2008–2017 from Top-Down (TD, left) and Bottom-Up (BU, right) approaches showing contributions from 18 regions for 5 source categories. Total source estimates from the BU approach are further classed into finer subcategories. Data source: Saunois et al. (2020) and Jackson et al., (2020).

Agriculture & Waste USA Agriculture & Waste USA Equatorial Africa Russia Biofuet & Biomass burning Southwest South America Middle East Wetlands Northern Africa Central Aria Southern Africa Central Aria

Bottom-Up budget (2008-2017)

Global sources: 737 [594-881] Tg CH4 vr-1

Fossil fuel production & use

Brazil

Southeast Asia

South Asia

Korea & Japan

Other Natural Not (yet) spatially distributed

Trends in European emissions

- GCP inversions show that European total emissions in 2017 is lower than that of the 2000-2006 period
- Inventories show decreasing trends

 \rightarrow Is the decrease in total emissions due to anthropogenic sources?

Effects of 2018 drought on biospheric (wetland) fluxes

Rinne et al. 2020 examined at Fennoscandian flux sites:

- Lompolojänkkä (FI-Lom)
 - Low precipitation, water table similar to other years, temperature high
 - CH₄ emissions higher than other years
- Other sites
 - Low precipitation, low water table, high temperature
 - CH₄ emissions lower than other years
- Was Lompolojänkkä very special or was it some regional effects?
- Can we estimate regional effects by inversion?

Figure 1. Locations of the mire flux measurement sites used in this study (black dots). FI-Kaa: Kaamanen; FI-Lom: Lompolojänkkä; FI-Sii: Siikaneva; SE-Myc: Mycklemossen; SE-Deg: Degerö (table 1). Also indicated are the weather stations providing long-term dimate data listed in table 3 (white diamonds).

Average monthly European* fluxes during 2008-2017

European emissions: seasonal cycle

- Large uncertainty in emissions from wetlands
 - Seasonal cycle amplitude (SCA) vary significantly by different inversions and process-based models.
 - Monthly median from TD shows very small SCA, while 95th percentile (upper limit) show amplitude of approx. 0.7 Tg CH₄ month⁻¹
 - BU SCA tends to be higher than that of TD
 - Some BU models show high winterspring emissions, close to summer level

Solid line: median of model ensemble, Dotted lines: individual model Shaded areas: between 5th and 95th percentiles

- European domain: [35°N-73°N, 13°W-38°E]
- Prognostic: models used their own internal approach to estimate wetland area
- Diagnostic: wetland surface areas from Wetland Area Dynamics for Methane Modeling (WAD2M)

European emissions: spatial distribution

- High anthropogenic emissions in cities, agricultural areas → high in central Europe
 - TD estimates do not vary so significantly between models
- Biospheric emissions are high in northern and north-east Europe
 - Locations of hot spots vary much between TD, BU-Prognostic and BU-Diagnostic
 - Range in estimates is significantly higher than that of anthropogenic emissions

Mean and range of CH_4 emission estimates over Europe, 2005-2017 average

*Mean of model ensembles is calculated from 2005-2017 monthly data. *Min. and Max. are minimum and maximum of model ensembles.

7

Optimize European CH₄ using CarbonTracker Europe-CH₄

- TM5 with ERA-Interim (1° x 1° zoom over Europe) (we're updating to ERA5 glb100x100 resolution)
- Grid-based optimization over Europe: 1° x 1°, 3° x 2°, 6° x 4°
- Spatial correlation: 100-500 km
- Weekly optimization

Methods

Bug fixed on flux multiplier calculation (does not affect other version of CTE)

Inversion year: 2005 - 2018

emissions

CarbonTracker Europe-CH₄

$$\begin{split} F^a_{\rm total}(k,r) &= x^a_{\rm anth}(k,r) \times F^p_{\rm anth}(k,r) + x^a_{\rm bio}(k,r) \times F^p_{\rm bio}(k,r) \\ &+ F^p_{\rm fire}(k,r) + F^p_{\rm termites}(k,r) + F^p_{\rm ocean}(k,r). \end{split}$$

Atmospheric CH₄ observations

- Atmospheric CH₄ as constraints: mainly NOAA + ICOS observations over Europe
- Used all available data
- Continuous hourly data are preprocessed before inversion:
 - Filtered by taking only "good quality" observations
 - Afternoon 12-16 LT averages
 - Night time 0-4 LT averages for mountain sites

Locations of atmospheric CH_4 observational sites, data available from 2000-2018

- Posterior anthropogenic emissions for EU28 is higher than the priors, especially before 2014
- Posterior anthropogenic emissions for EU28 show decreasing trends
 - Regardless of the prior emissions (EDGAR v5 vs TNO, and variety of biospheric priors)
 - Decreasing trend is clear until 2013.
 - Latest years show less interannual changes
- Biospheric emissions is slightly decreasing.
 - 2013-2018 averages are lower than 2005-2012 averages regardless of the priors

- 2018 July was hot in and dry in most of Europe
- Effect of drought is seen already in June in central Europe, but not in e.g. northern Fennoscandia

Anomaly of monthly meteorology (CRU)

- Effect on July emissions is stronger in JSBACH-HIMMELI (JSHIM) than LPX-Bern v1.4 (LPX)
 - LPX show pos. anomaly only in the northwest of Norway → enhanced feature in posterior
 - JSHIM show pos. anomaly over whole Fennoscandia and Scotland → pos. anomaly in Finland and eastern Europe, but elsewhere tend to show neg. anomaly
- GCP-posterior show similar regional features to JSHIM-posterior
 - Stronger anomaly in southern Finland, though

July anomaly of CH₄ flux estimated from CTE-CH₄

- Precipitation and CH₄ fluxes are generally correlated with some time lag
- High precipitation in June and high temperature in July could lead to high CH₄ emissions in July
 - Could explain pos. flux anomaly in northern Finland (JSHIM-posterior agree with Lompolojänkkä flux measurements)
 - Cannot explain neg. flux anomaly in northern Sweden/Norway
- Low precipitation in June-July with high temperature in July could lead to low CH₄ emissions in July
 - Could explain neg. anomaly in southern Sweden
 - Cannot explain pos. anomaly in southern Finland (model anomaly disagrees also with flux measurements)

Conclusion

- Decreasing trends in European CH₄ fluxes were found.
 - Mostly due to anthropogenic sources
 - Decrease was strong until around 2013, but latest years does not show significant changes
 - Biospheric emissions may have also decreased, but not same time as the anthropogenic sources
- 2018 drought possibly affected European CH₄ fluxes differently
 - Southern peatlands tend to show neg. anomaly
 - Northern peatlands: Swedish side tend to show neg. anomaly, and Finnish side pos. anomaly after inversion.
 - Further investigation is needed to better understand effects of assimilated observations, meteorology and precipitation&WTD relations.

Implementation of soil Freeze/Thaw data

Implementation of soil Freeze/Thaw data

Research question

- Winter time biospheric emissions are small, but timing of soil freeze/thaw (F/T) may not be well defined/estimated in process-based models.
 - Driving meteorological data
 - Underlaying location of permafrosts
- Winter methane emissions in NHL are dominated by anthropogenic sources, and can be a proxy for magnitude/trends in anthropogenic source.
- Incorrect estimation of biospheric seasonal cycle could affect estimates of anthropogenic sources.
 - Prior uncertainty depends on emission magnitude (at current setup)

Implementation of soil Freeze/Thaw data

<u>Methods</u>

- Use information from SMOS satellite about soil F/T status
 - SMOS = ESA's sun synchronous orbiting massive microwave satellite, low operating frequency (i.e. can see the actual soil status, around 5 cm blow ground)
- Implement that into prior biospheric estimates
 - During the frozen season, defined by SMOS data, emissions are set to be winter minimum
 → Gives smaller emissions especially in late autumn and early spring. (~3% reduction in annual budgets)
- Optimize emissions using CarbonTracker Europe CH₄
 - LPX-Bern v1.4 as prior. This includes permafrost modelling.
 - Winter biospheric emissions becomes lower, and anthropogenic emissions higher

Atmospheric mixing ratios

- For some sites, the agreement • improved by F/T implementation
 - Bias reduced in many southern Canadian sites and Fennoscandia, and western Europe
- Others, the agreement became worse.

-0.75

Tenkanen et al., in preperation 19

-0.75

Atmospheric mixing ratios

- Cherskii
 - Rural area, permafrost
 - During winter, soil is frozen, so the spikes in the measurements are the anthropogenic signals from long-range transport
 - Winter spikes are not well captured in model estimates
 - Without F/T, winter concentration peaks are better estimated, i.e. total emissions are higher.
- Similar feature is seen at other permafrost sites, e.g. Tiksi (Russia) and Inuvik (Canada)

chs_001C0 Cherskii Russian Federation

Emission estimates

- Cherskii
 - Emission around the site is dominated by biospheric sources
 - Late autumn early winter biospheric emissions are higher in the original inversion (but wetland emission should be negligible when soil is frozen...)
 - Anthropogenic emissions are too small \rightarrow prior uncertainty is too small for inversion to correct.
- Regional budgets
 - Anthropogenic estimates is higher with F/T implementation, but total budgets are lower than the original inversion.

- *Changes due to F/T impl. (Mg CH₄ per year)
- -102 Biospheric
- Anthropogenic + 16

Conclusion

- Implementation of soil F/T status in theory gives more realistic biospheric emission estimates
 - Often high spikes measured at permafrost sites during winter is a signal from anthropogenic source from long-range transport
 - Could avoid incorrectly increasing biospheric emissions during winter by inversion
- Anthropogenic emission estimates got better...?
 - Agreement in the southern NHL sites improved \rightarrow Anthropogenic emissions in winter should be higher
 - Model could not reproduce winter mole fraction spikes at permafrost sites. \rightarrow Too small prior anthropogenic emissions around the sites indicated problem with the inversion setup
 - It'd be nice if there'd be more observations, but could inversion do better...?

Is it time that we got away from conventional prior uncertainty, which is XX% of the prior emissions...?

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Thank you!

Joan

