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- Isotope (8'*C-CH,4) seasonal cycle (Vilma’s presentation later)
- Satellite inversion (TROPOMI)
- Ethane (C;Hg) simulations (connected to VERIFY)



European CHj fluxes

Methane source estimates for 2008-2017 from Top-Down (TD, left) and Bottom-Up (BU, right) approaches showing contributions
from 18 regions For 5 source categories. Total source estimates from the BU approach are further classed into finer subcategories.

European emissions

* Largest contribution from
agriculture and waste sectors

 Second most from fossil fuel
production and use

* Emissions from wetlands are the
largest natural source
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Global Methane Budget 2000-2017: regional & natural and anthropogenic source estimates

Data source: Saunois et al. (2020) and Jackson et al., (2020).
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European CH4 fluxes

Trends in European emissions

 GCP inversions show that European total emissions in 2017 is lower than
that of the 2000-2006 period

* |Inventories show decreasing trends
— |s the decrease in total emissions due to anthropogenic sources?
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European CH4 fluxes
Effects of 2018 drought on biospheric (wetland) fluxes e

Rinne et al. 2020 examined at Fennoscandian flux sites: prr orixan
« Lompolojankka (Fl-Lom) y
- Low precipitation, water table similar to other years, _J
temperature high A Csoe
- CH,4 emissions higher than other years 4 : T gt

* Other sites T
- Low precipitation, low water table, high temperature "[ 'g: ¥ al
- CH4 emissions lower than other years L i

* Was Lompolojankka very special or was it some regional o :fosi o i i b nesene S eicn 1

effects? SE-Myc: Mycklemossen; SE-Deg: Degerd (table 1). Also indicated are the
- weather stations providing long-term dimate data listed in table 3 (white
diamands).

e Can we estimate regional effects by inversion?
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European CHj fluxes

European emissions: seasonal cycle

&

Large uncertainty in emissions from
wetlands

Seasonal cycle amplitude (SCA) vary
significantly by different inversions and
process-based models.

Monthly median from TD shows very
small SCA, while 95th percentile (upper
limit) show amplitude of approx. 0.7 Tg
CH4 month*

BU SCA tends to be higher than that of
D

Some BU models show high winter-
spring emissions, close to summer level
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CH, fluxes [Tg CHy month~1]
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Solid line: median of model ensemble, Dotted lines: individual model
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European domain: [35°N-73°N, 13°W-38°E]
Prognostic: models used their own internal approach

to estimate wetland area

Diagnostic: wetland surface areas from Wetland Area
Dynamics for Methane Modeling (WAD2M)




European CHj fluxes

European emissions: spatial distribution

* High anthropogenic emissions in
cities, agricultural areas — high in
central Europe

TD estimates do not vary so
significantly between models

* Biospheric emissions are high in

northern and north-east Europe
Locations of hot spots vary much
between TD, BU-Prognostic and BU-
Diagnostic

Range in estimates is significantly
higher than that of anthropogenic
emissions
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Mean and range of CH4 emission estimates over
Europe, 2005-2017 average
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Methods

e Optimize European CH4 using CarbonTracker Europe-CHg4
- TMS5 with ERA-Interim (1° x 1° zoom over Europe)
(we’re updating to ERAS5 glb100x100 resolution)
- Grid-based optimization over Europe: 1° x 1°, 3°x 2°,6° x4°
- Spatial correlation: 100-500 km
- Weekly optimization
- Bug fixed on flux multiplier calculation
(does not affect other version of CTE)

4
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* Use two sets of anthropogenic priors (EDGAR v5.0), and three sets of biospheric
(wetland + soil sink) priors (LPX-Bern v1.4, JSSBACH-HIMMELI, GCP- prlor)

emissions

* Inversion year: 2005 - 2018

60°N

Biospheric  |:
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CarbonTracker Europe-CHy4
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Atmospheric CH4 observations

* Atmospheric CH4 as constraints:

mainly NOAA + ICOS
observations over Europe

 Used all available data

e Continuous hourly data are pre-
processed before inversion:

- Filtered by taking only “good
quality” observations

- Afternoon 12-16 LT averages

- Night time 0-4 LT averages for
mountain sites
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Results

&

Posterior anthropogenic emissions for
EU28 is higher than the priors,
especially before 2014

Posterior anthropogenic emissions for
EU28 show decreasing trends

- Regardless of the prior emissions
(EDGAR v5 vs TNO, and variety of
biospheric priors)

— Decreasing trend is clear until 2013.

- Latest years show less interannual
changes

Biospheric emissions is slightly
decreasing.

- 2013-2018 averages are lower than 2005-
2012 averages regardless of the priors

CHj fluxes [Tg CHy year 1]

CHy fluves [T CHy year™)]

32 1

30 4

281

26

244

22 4

201

Annual anthropogenic emissions for EU28

—— LPX-Bern v1.4/EDGARV3
—— JSBACH-HIMMELIJEDGARVS
—— GCP/EDGARV5S

LPX-Bern v1.4/TNO

______

.
~
e
________________
hhhhhhhhhh

____________

T T T T T T T
2006 2008 2010 2012 2014 2016 2018

*1 emissions

. . R T
el A e
lospneric =
et

Dashed line: prior, solid line: posterior 11




Results Anomaly of monthly meteorology (CRU)

June anomaly Temperature 2.0 June anomaly Precipitation

FINNISH METEOROLOGICAL INSTITUTE

i ) Jun. tmq. - . Jun. prec. "
e 2018 July was hot in and dry in most of ﬁ |
Europe 70 Y oy M-
,g?:é‘ 4 ?«w/ ‘\ Fo.s é i
* Effect of drought is seen already in June in b o 3
central Europe, but not in e.g. northern 7
Fennoscandia .| S
Jul. tmpl. Jul. prec. "

*Positive (red) means 2018 is higher than 2015-2017 average 12



Results

July anomaly of CH,4 flux estimated from

C : : CTE-CH,4
* Effect on July emissions is stronger in Prior
JSBACH-HIMMELI (JSHIM) than LPX- il Rl Ry Sa—]
Bern v1.4 (LPX) | R s,

- LPX show pos. anomaly only in the Ak
northwest of Norway — enhanced feature | . "7 | " g o0 e
in posterior SPena | Sl

- JSHIM show pos. anomaly over whole el ) T s PR of D TR S
Fennoscandia and Scotland — pos. o ' | 53
anomaly in Finland and eastern Europe, Posterior

but elsewhere tend to show neg. anomaly .~ e Tl NS

 GCP-posterior show similar regional A / {‘;(_.‘
features to JSHIM-posterior MG S L g S 160 5.
~  Stronger anomaly in southern Finland, Wl Pl

though J S e
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Results

% FINNI

Precipitation and CH, fluxes are generally correlated with some time lag

High precipitation in June and high temperature in July could lead to high CH4
emissions in July

— Could explain pos. flux anomaly in northern Finland (JSHIM-posterior agree with
Lompolojankka flux measurements)

— Cannot explain neg. flux anomaly in northern Sweden/Norway

Low precipitation in June-July with high temperature in July could lead to low CH4
emissions in July
— Could explain neg. anomaly in southern Sweden

— Cannot explain pos. anomaly in southern Finland (model anomaly disagrees also with flux
measurements)
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Conclusion

* Decreasing trends in European CH,4 fluxes were found.

- Mostly due to anthropogenic sources

— Decrease was strong until around 2013, but latest years does not show significant
changes

- Biospheric emissions may have also decreased, but not same time as the
anthropogenic sources

« 2018 drought possibly affected European CH, fluxes differently

— Southern peatlands tend to show neg. anomaly

— Northern peatlands: Swedish side tend to show neg. anomaly, and Finnish side pos.
anomaly after inversion.

- Further investigation is needed to better understand effects of assimilated observations,
meteorology and precipitation&WTD relations.
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Implementation of soil Freeze/Thaw data

LPX2019 _FT_CTE, average bio flux, month 11 le—8

4

iospheric CH, flux [mol m=2 s~
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Implementation of soil Freeze/Thaw data

Research question

* Winter time biospheric emissions are small, but timing of soil freeze/thaw (F/T)
may not be well defined/estimated in process-based models.
- Driving meteorological data
- Underlaying location of permafrosts

* Winter methane emissions in NHL are dominated by anthropogenic sources, and
can be a proxy for magnitude/trends in anthropogenic source.

* Incorrect estimation of biospheric seasonal cycle could affect estimates of
anthropogenic sources.

- Prior uncertainty depends on emission magnitude (at current setup)

17



Implementation of soil Freeze/Thaw data

Methods

* Use information from SMOS satellite about soil F/T status
- SMOS = ESA’s sun synchronous orbiting massive microwave satellite, low operating
frequency (i.e. can see the actual soil status, around 5 cm blow ground)
* Implement that into prior biospheric estimates

- During the frozen season, defined by SMOS data, emissions are set to be winter minimum

— Gives smaller emissions especially in late autumn and early spring. (~3% reduction in
annual budgets)

e Optimize emissions using CarbonTracker Europe — CH,4

- LPX-Bern v1.4 as prior. This includes permafrost modelling.
- Winter biospheric emissions becomes lower, and anthropogenic emissions higher

&

18



Results

Atmospheric mixing ratios

For some sites, the agreement

improved by F/T implementation

- Bias reduced in many southern Positive: F/T better

Canadian sites and

Negative: orig. better

Fennoscandia, and western

Europe

Others, the agreement
became worse.

Difference between CTE FTimpl posterior and CTE LPX2019 posterior, winter bias

Red: F/T better, blue: orig. better
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Results

Atmospheric mixing ratios

chs_001CO0 Cherskii Russian Federation

* Cherskii 2200 - — Bbservaiions
—— LPX2019, bias=-89.50
— Rural area, permafrost e
- During winter, soil is frozen, so the e e
spikes in the measurements are the 21007
anthropogenic signals from long-range =
Q.
transport =
- Winter spikes are not well captured in £ ***"]
model estimates s

- Without F/T, winter concentration
peaks are better estimated, i.e. total
emissions are higher.

1900

e Similar feature is seen at other 1800 |
permafrost sites, e.g. Tiksi (Russia) : . : . . . .
. Q b ©
% and Inuvik (Canada) S '19\’\/ '190 mé\f) S '19\3) S
Time

Tenkanen et al., in preperation 20



Results

Emission estimates

1e8 Cherskii biospheric weekly CH,4 emissions

* Cherskii

- Emission around the site is dominated 0
by biospheric sources 075

- Late autumn — early winter biospheric
emissions are higher in the original
inversion (but wetland emission should

0.50 1

0.25

Weekly CH,; emission [g]

0.00

be negligible when soil is frozen...) O ot il
. . . ——- LPX prior
- Anthropogenic emissions are too small 050l — K posteror
— prior uncertainty is too small for S e o P @ o @ o

inversion to correct. Tire

Eastern Siberian budgets
*Changes due to F/T impl.
(Mg CHy4 per year)

* Biospheric -102

* Anthropogenic + 16

* Regional budgets

- Anthropogenic estimates is higher with
F/T implementation, but total budgets
are lower than the original inversion.

&

Tenkanen et al., in preperation 21



Conclusion

* Implementation of soil F/T status in theory gives more realistic biospheric
emission estimates

- Often high spikes measured at permafrost sites during winter is a signal from
anthropogenic source from long-range transport

— Could avoid incorrectly increasing biospheric emissions during winter by inversion

* Anthropogenic emission estimates got better...?

- Agreement in the southern NHL sites improved — Anthropogenic emissions in winter
should be higher

- Model could not reproduce winter mole fraction spikes at permafrost sites. — Too small prior
anthropogenic emissions around the sites indicated problem with the inversion setup

- |t'd be nice if there’d be more observations, but could inversion do better...?

Is it time that we got away from conventional prior uncertainty, which is
XX% of the prior emissions...?
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Thank you!




Posterior biospheric fluxes

JSBACH-HIMMELI

LPX-Bern v1.4
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