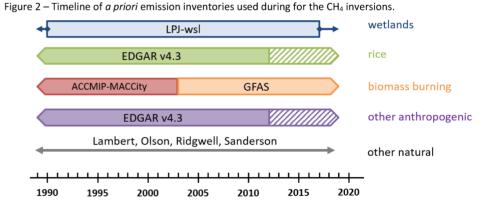
TROPOMI CH4 inversions

Jacob van Peet 30th International TM5 Meeting online, 22 October 2020

Outline

- TROPOMI CH₄ inversions
- IASI (Metop-B) CH₄ inversions
- Community Inversion Framework

3 model runs (6° lon × 4° lat)

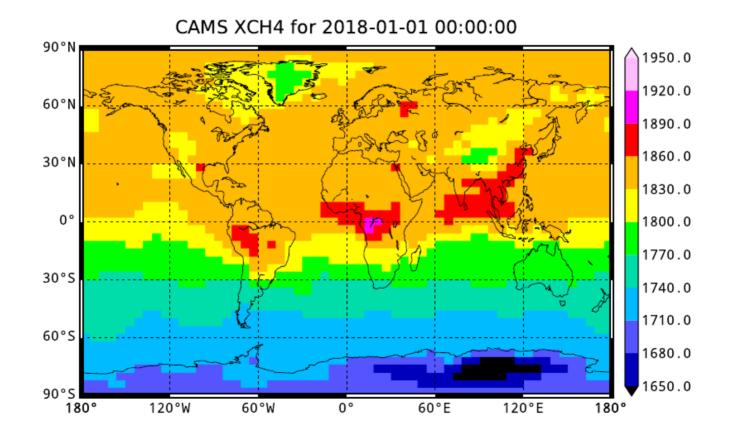

- General settings
 - model runs from 1-1-2018 till 1-7-2019; analyse from 1-5-2018 till 1-5-2019
 - 4 sources: biomass burning, rice, wetlands, and other (based on CAMS)
 - same initial concentration (based on CAMS), ERA5 meteo, maximum of 40 iterations
- 1: surface measurements only
 - NOAA CH₄ flask measurements
- 2: TROPOMI measurements only
 - horizontal merging on $6^{\circ} \times 4^{\circ}$ (lon × lat)
 - qa_value = 1
 - bias corrected data from the operational product
 - uncertainty: σ_{meas} of gridbox, with a minimum of 2 × mean precision
- 3: TROPOMI measurements only + bias correction wrt 1)
 - as in run 2)
 - bias correction derived by comparing TROPOMI measurements with results from run 1)

4 sources

- biomass burning, rice, wetlands, and other
- these sources have distinct spatio-temporal properties so that the inversion algorithm can distinguish their effect on the CH₄ concentration

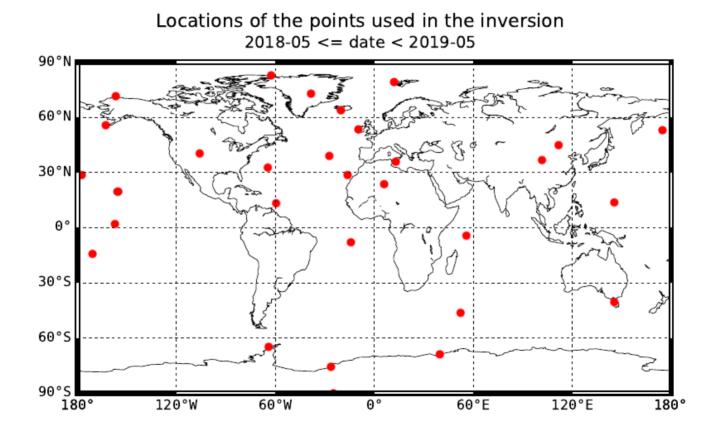
Category	Period	Source
Wetlands	< 1990	(1990)
	1990-2017	LPJ-wsl
	> 2017	(2017)
Rice	≤ 2012	EDGAR v4.3 with Matthews seasonality
	≥ 2013	EDGAR v4.3 with Matthews seasonality, extrapolated
biomass burning	≤ 2002	ACCMIP-MACCity
	≥ 2003	GFAS
other	≤ 2012	EDGAR v4.3 with 2010 seasonality
anthropogenic	≥ 2013	EDGAR v4.3 with 2010 seasonality, extrapolated
oceans	climatology	Lambert
wild animals	climatology	Olson
soil sink	climatology	Ridgwell
termites	climatology	Sanderson

Table 2 - Overview of *a priori* emission inventories used for the CH_4 inversions. The colors represent the different emission super-categories that are optimized by the inversion.


From: Segers (2020), Description of the CH4 Inversion Production Chain, Ref: CAMS73_2018SC1_D73.5.2.2-2019_202001_production_chain_v1, updated version.

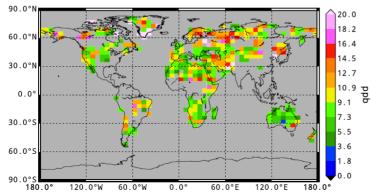
Initial concentration

- Updated by default in 4DVAR. To disable:
 - set the error to 0
 - remove initial concentration from the state vector \checkmark
- Use a daily mean from the CAMS dataset and convert it to an initial concentration file
 - z_cams_l_cams73_201801_v18r1_ra_ml_dm_ch4_conc.nc
 - provided by Arjo Segers
- The initial concentration is derived from an optimised inversion using surface measurements only



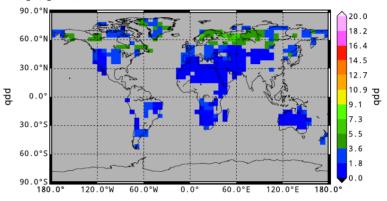
Initial concentration

Surface measurements

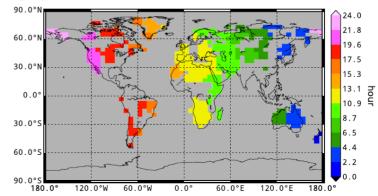

TROPOMI measurements: merging and uncertainty

file = S5P RPRO L2 CH4 20180901T233233 20180902T011550 04591 01 010202 20190104T122903.nc d lon, d lat = 6.0, 4.0 90.0° 1900.0 1881.8 60.0° 1863.6 1845.5 30.0°N 1827.3 1809.1 pp 1790.9 b 0.0 1790.9 1772.7 30.0°S 1754.5 1736.4 60.0°S 1718.2 1700.0 90.00 120.0°W 60.0°W 0.0 60.0°E 120.0°E 180.0° 180.0°

Gridded xch4


Gridded xch4_sdev

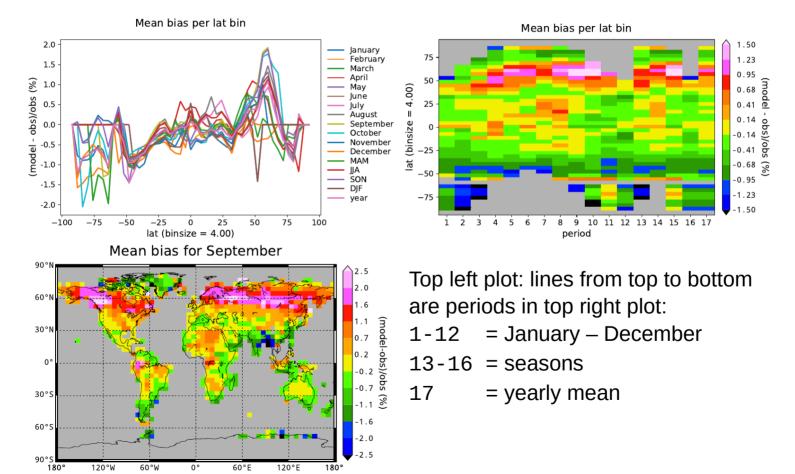
file = S5P_RPR0_12_CH4___20180901T233233_20180902T011550_04591_01_010202_20190104T122903.nc d_iat = 6.0, 4.0


Gridded xch4 precision

file = S5P_RPR0_L2_CH4___20180901T233233_20180902T011550_04591_01_010202_20190104T122903.nc d lat = 6.0, 4.0

Time differences with 20180901T000000

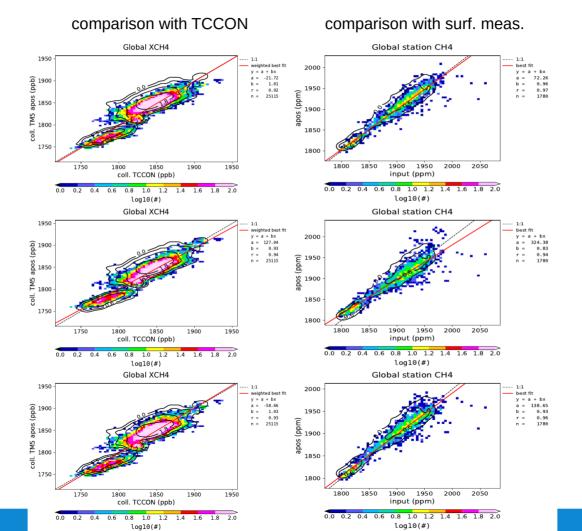
file = S5P_RPRO_L2_CH4___20180901T233233_20180902T011550_04591_01_010202_20190104T122903.nc d_lon, d_lat = 6.0, 4.0



TROPOMI measurements: bias correction

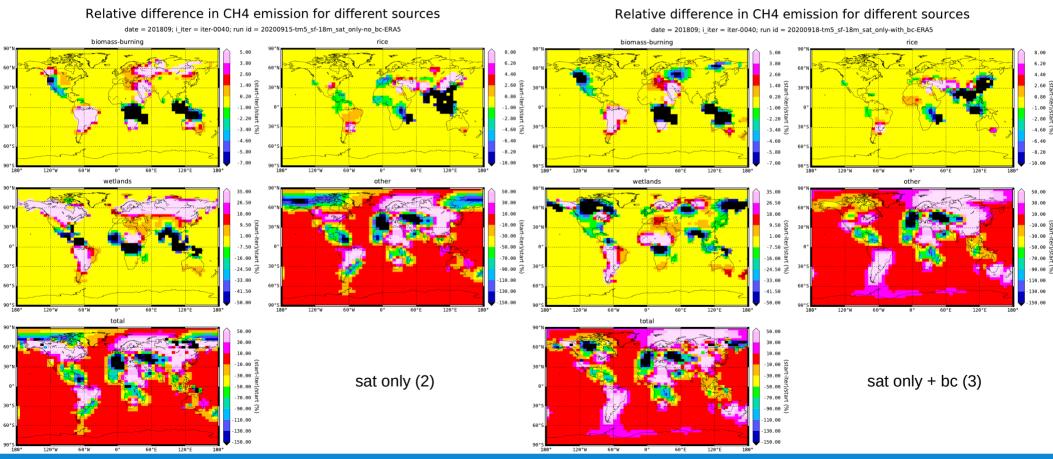
- Compare TROPOMI measurements to points-only inversion
- Apply AK to TM5 profile and calcuate column averaged concentration as it would be observed by TROPOMI
- Calculate the relative difference between TROPOMI and AKconvolved TM5 XCH4
- Bin those differences as a function of latitude
- Use the mean differences per month as a correction factor on the TROPOMI data before merging and assimilation

TROPOMI measurements: bias correction



top: surface only (1), middle: sat only (2), bottom: sat only + bc (3)

top: surface only (1), middle: sat only (2), bottom: sat only + bc (3)



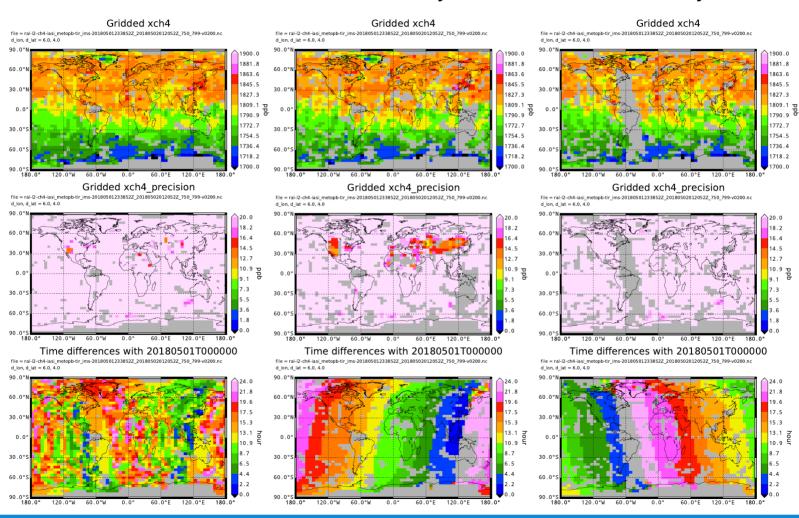
Emission changes

Emission changes

Methane+: RAL IASI (Metop-B)

- ESA project Methane+
 - combining SWIR and TIR CH₄ satellite observations to assess sources and sinks on regional and global scale
 - https://methaneplus.eu/
- day / night time observations
 - time of gridded data
 - variable which indicates the ascending (~night) or descending (~day) phase of the orbit

data format issues


- no pressure for layer boundaries, only at layer centers
- different shapes for AK and a-priori profile (50 vs 12 layers)
- requires significant code update to implement

desc + asc

desc only

asc only

16

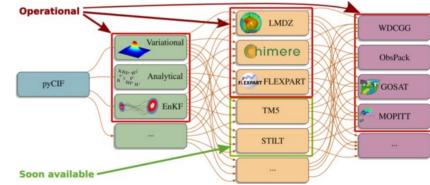
VERIFY: Community Inversion Framework

• H2020 project VERIFY

- VERIFY develops a system to estimate greenhouse gas emissions to support countries' emission reporting to the UN Climate Change Convention Secretariat
- The project focuses on the three major greenhouse gases responsible for global warming: carbon dioxide (CO_2), methane (CH_4) and nitrous oxide (N_2O)
- quantify GHG fluxes: top down (e.g. satellite data + inversion models) and bottom up
- http://verify.lsce.ipsl.fr/

• CIF: single inversion framework that can run different models

- regional or global, Eulerian and Lagrangian
- inversions can be variational, analytical or EnKF
- http://community-inversion.eu/


VERIFY: Community Inversion Framework

• objectives

- rationalize development efforts
- foster cross-compatibility and inter-comparability of inversion systems
- ensure quality control with better traceability and transparency
- open the way towards operational systems

status

- framework written in python
- open source (gitlab server hosted by NILU)
- Chimere, LMDZ and FLEXPART are implemented
- STILT is being implemented
- I'm working on implementing TM5

Conclusion

- TM5 inversions using TROPOMI measurements
 - Model runs for more than a year
 - Four sources: biomass burning, rice, wetlands, and other
 - Bias correction for TROPOMI data based on comparison with inversion using only surface data
- Other work
 - TM5 inversions using RAL Metop-B IASI data
 - Incorporate TM5 into the community inversion framework

