

Update on carbon monoxide inversions

Johann Rasmus Nüß¹

Nikos Daskalakis¹, Oliver Schneising², Michael Buchwitz², Maarten C. Krol^{3,4} and Mihalis Vrekoussis¹

¹ LAMOS group, IUP, University Bremen

² Carbon and Greenhouse Gas Group, IUP, University Bremen

³ MAQ, WIMEK, Wageningen University and Research, the Netherlands

⁴ IMAU, Utrecht University, the Netherlands

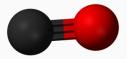
Outline

1 Californian Fires

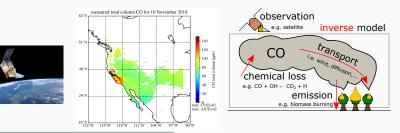
- Objective and Motivation
- Intermediate Results
- 2 Novel chemical-scheme development for carbon monoxide inversions (CHEMFORCER)
 - Background
 - Methods
- 3 Summary & Outlook

Californian Fires

Use high-spatial-resolution satellite data

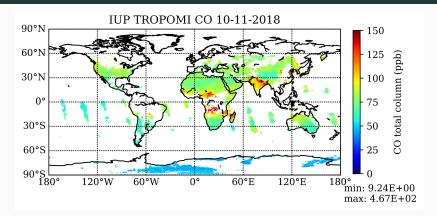

- Extend the chemical scheme of the model for using satellite data products for multiple species
- Perform inversions using data from multiple satellites instruments

Californian wild fires


- \blacksquare Warmer and dryer than usual \rightarrow wildfires more likely
- November and December 2018: major burning events
- Focus on Camp and Woolsey fires, raging in the weeks after November 8th
 - Devastated area about 1000 km²
 - Direct damage: 88 dead, burned land and structures, forced evacuation of multiple towns
 - Indirect damage due to pollution

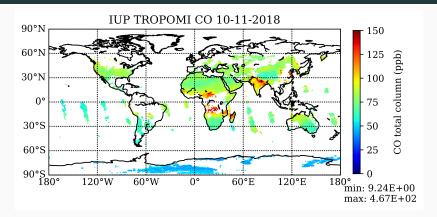
Objective and Motivation

Retrieve CO emissions from biomass burning events in California using TROPOMI observation in the TM5 4DVAR model.


Images: Fire: Mark McKenna / Zuma Press, LA-Times; S5P: ESA

TROPOMI observations

- TROPOspheric Monitoring Instrument onboard of Sentinel-5 Precursor
- Daily global coverage
- Local overpass time 13:30
- High resolution (up to $7 \times 7 \text{ km}^2$)
 - \to Still useful for $1^\circ\times 1^\circ$ model boxes: lower error, chance to have at least some cloud free pixels
- Especially sensitive to troposphere/boundary layer


Satellite observations

Given: TROPOMI CO total column observation

Satellite data courtesy of Oliver Schneising and Michael Buchwitz of IUP Carbon and Greenhouse Gas Group

Satellite observations

- Given: TROPOMI CO total column observation
- Wanted: Location and temporal development of emissions

Satellite data courtesy of Oliver Schneising and Michael Buchwitz of IUP Carbon and Greenhouse Gas Group

Code mostly up to date with Sourish' version

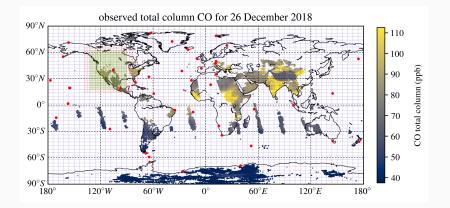
 $\rightarrow~$ Extended to handle TROPOMI data, major bug fixed!

- Code mostly up to date with Sourish' version
 - $\rightarrow\,$ Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):

- Code mostly up to date with Sourish' version
 - $\rightarrow\,$ Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles

- Code mostly up to date with Sourish' version
 - $\rightarrow\,$ Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles
 - Anthropogenic: MACCity CMIP6

- Code mostly up to date with Sourish' version
 - $\rightarrow\,$ Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles
 - Anthropogenic: MACCity CMIP6
 - Natural: VOCs and CH₄ from TM5-MP (Huijnen et al. 2010)


- Code mostly up to date with Sourish' version
 - $\rightarrow\,$ Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles
 - Anthropogenic: MACCity CMIP6
 - Natural: VOCs and CH₄ from TM5-MP (Huijnen et al. 2010)
 - Scaling to "correct" totals only partly successful

- Code mostly up to date with Sourish' version
 - \rightarrow Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles
 - Anthropogenic: MACCity CMIP6
 - Natural: VOCs and CH₄ from TM5-MP (Huijnen et al. 2010)
 - Scaling to "correct" totals only partly successful
 - Update to 2018 run of Moguntia TM5-MP in progress

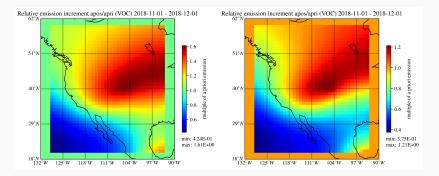
- Code mostly up to date with Sourish' version
 - \rightarrow Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles
 - Anthropogenic: MACCity CMIP6
 - Natural: VOCs and CH₄ from TM5-MP (Huijnen et al. 2010)
 - Scaling to "correct" totals only partly successful
 - Update to 2018 run of Moguntia TM5-MP in progress
- Transport: ECMWF erai meteorology (Dee et al. 2011)

- Code mostly up to date with Sourish' version
 - \rightarrow Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles
 - Anthropogenic: MACCity CMIP6
 - Natural: VOCs and CH₄ from TM5-MP (Huijnen et al. 2010)
 - Scaling to "correct" totals only partly successful
 - Update to 2018 run of Moguntia TM5-MP in progress
- Transport: ECMWF erai meteorology (Dee et al. 2011)
- Loss: reaction with OH based on Spivakovsky climatology scaled by 0.92 (Huijnen et al. 2010), no wet/dry deposition

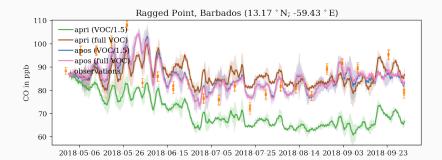
- Code mostly up to date with Sourish' version
 - \rightarrow Extended to handle TROPOMI data, major bug fixed!
- Production (no daily cycle):
 - Biomass burning: FINN GFED4.1s with IS4FIRES profiles
 - Anthropogenic: MACCity CMIP6
 - Natural: VOCs and CH₄ from TM5-MP (Huijnen et al. 2010)
 - Scaling to "correct" totals only partly successful
 - Update to 2018 run of Moguntia TM5-MP in progress
- Transport: ECMWF erai meteorology (Dee et al. 2011)
- Loss: reaction with OH based on Spivakovsky climatology scaled by 0.92 (Huijnen et al. 2010), no wet/dry deposition
- M1qN3 optimizer
- Zoom over California

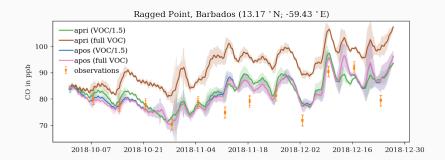
- Start from TM5MP full chemistry fields
- \blacksquare Spin-up inversion for 5 months to flasks and global HASI TROPOMI observations on $6^\circ \times 4^\circ$
- 3 month main inversion period around 2 week time of interest

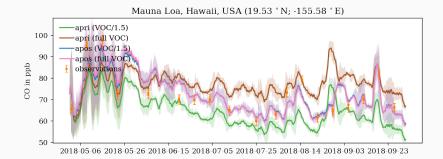
Most recent NOAA surface flask CO observation

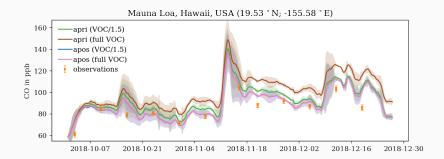

- Most recent NOAA surface flask CO observation
- Updated selection of background stations based on method in Hooghiemstra et al. 2012

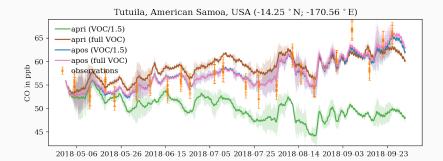
- Most recent NOAA surface flask CO observation
- Updated selection of background stations based on method in Hooghiemstra et al. 2012
- Fixed bug in vertical distribution of CO from VOCs

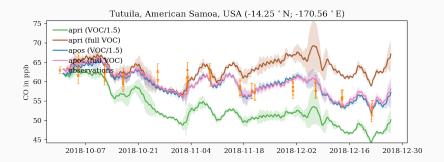

- Most recent NOAA surface flask CO observation
- Updated selection of background stations based on method in Hooghiemstra et al. 2012
- Fixed bug in vertical distribution of CO from VOCs
- $\rightarrow\,$ A priori fits already great in most places


- Most recent NOAA surface flask CO observation
- Updated selection of background stations based on method in Hooghiemstra et al. 2012
- Fixed bug in vertical distribution of CO from VOCs
- $\rightarrow\,$ A priori fits already great in most places
- $\rightarrow\,$ Spin up works as intended


Aliasing between biomass burning and VOC emissions




- Identical setups except for BB prior (left: GFED, right: FINN)
- Simultaneous inversion of BB CO and CO from VOC/CH₄
- A posterior production from VOC/CH₄ strongly affected by a priori biomass emissions → simultaneous inversion not feasible



Summary & Outlook

CO emissions from TM5-4DVAR with TROPOMI CO observations

Summary & Outlook

CO emissions from TM5-4DVAR with TROPOMI CO observations

Summary & Outlook

- CO emissions from TM5-4DVAR with TROPOMI CO observations
- Flask observations added, with promising results

- CO emissions from TM5-4DVAR with TROPOMI CO observations
- Flask observations added, with promising results
- Proper spin up, from TM5MP and nudged to flasks and satellite

- CO emissions from TM5-4DVAR with TROPOMI CO observations
- Flask observations added, with promising results
- Proper spin up, from TM5MP and nudged to flasks and satellite
- Up to date a priori inventories

- CO emissions from TM5-4DVAR with TROPOMI CO observations
- Flask observations added, with promising results
- Proper spin up, from TM5MP and nudged to flasks and satellite
- Up to date a priori inventories

- CO emissions from TM5-4DVAR with TROPOMI CO observations
- Flask observations added, with promising results
- Proper spin up, from TM5MP and nudged to flasks and satellite
- Up to date a priori inventories
- Needs final tweaking/checking of a priori errors, temporal and spatial correlations and satellite inflation

- CO emissions from TM5-4DVAR with TROPOMI CO observations
- Flask observations added, with promising results
- Proper spin up, from TM5MP and nudged to flasks and satellite
- Up to date a priori inventories
- Needs final tweaking/checking of a priori errors, temporal and spatial correlations and satellite inflation
- Compare to IASI based inversions

- CO emissions from TM5-4DVAR with TROPOMI CO observations
- Flask observations added, with promising results
- Proper spin up, from TM5MP and nudged to flasks and satellite
- Up to date a priori inventories
- Needs final tweaking/checking of a priori errors, temporal and spatial correlations and satellite inflation
- Compare to IASI based inversions
- Consider more complex chemistry, like HCHO

Novel chemical-scheme development for carbon monoxide inversions (CHEMFORCER)

Novel chemical-scheme development for carbon monoxide inversions (CHEMFORCER)

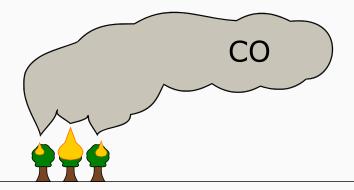
 Improve wildfire CO emission estimates by including HCHO observations in TM5-4dvar inversions

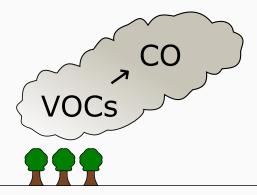
Novel chemical-scheme development for carbon monoxide inversions (CHEMFORCER)

- Improve wildfire CO emission estimates by including HCHO observations in TM5-4dvar inversions
- Research stay Meteorology and Air Quality Group (MAQ) at the Wageningen University & Research (WUR) in the Netherlands

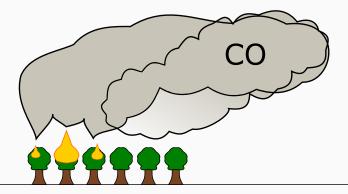
Novel chemical-scheme development for carbon monoxide inversions (CHEMFORCER)

- Improve wildfire CO emission estimates by including HCHO observations in TM5-4dvar inversions
- Research stay Meteorology and Air Quality Group (MAQ) at the Wageningen University & Research (WUR) in the Netherlands
- Collaboration with Prof. Dr. Maarten C. Krol, one of the model's original creators, and other students working on related topics


- Use high-spatial-resolution satellite data
- Extend the chemical scheme of the model for using satellite data products for multiple species
- Perform inversions using data from multiple satellites instruments


- Volatile, colorless and toxic gas
- Intermediate species in oxidation of CH₄ and VOCs to CO
 - Specifically, proxy species for the isoprene produced by plants
 - As such part of and proxy for the natural/biogenic CO source
- Shortlived, lifetime of a few hours in the sunny atmosphere

- CO from biomass burning looks the same as CO from natural sources
- Collocated sources
- $\rightarrow\,$ Aliasing in inversion results


- CO from biomass burning looks the same as CO from natural sources
- Collocated sources
- $\rightarrow\,$ Aliasing in inversion results

- CO from biomass burning looks the same as CO from natural sources
- Collocated sources
- $\rightarrow\,$ Aliasing in inversion results

- CO from biomass burning looks the same as CO from natural sources
- Collocated sources
- $\rightarrow\,$ Aliasing in inversion results

Problem:

- CO from biomass burning looks the same as CO from natural sources
- Collocated sources
- $\rightarrow\,$ Aliasing in inversion results

Solution:

- Use observations for CO and HCHO
- HCHO sufficient proxy for the whole natural source
- $\rightarrow\,$ If ambient and local HCHO are known, the biogenic source can be estimated and distinguished from the biomass burning source

Multiple approaches:

- Extend the currently very simplified CO chemistry in TM5-4DVAR to include HCHO
- $\rightarrow\,$ Solving more complex chemistry $\rightarrow\,$ severely increased computation time
 - Create look-up tables for loss and production of CO and HCHO under different ambient conditions
 - Use TM5MP to get loss rates..
 - .. either use a simplified scaling approach
 - \blacksquare .. or do a dedicated HCHO inversion

 $P_{\rm CO} \propto P_{\rm HCHO} = L_{\rm HCHO} \cdot [{\rm HCHO}]_{\rm TM5} \cdot {\rm scaling_factor}$

- $P_{\rm HCHO}$: Biogenic source of HCHO to be used in the inversions
- $L_{\rm HCHO}$: Chemical loss rate of HCHO, to be taken from TM5MP
- [HCHO]_{TM5}: Current concentration of HCHO, to be taken from TM5MP and compared to satellite observations to obtain scaling_factor

$P_{\rm CO} \propto P_{\rm HCHO} = L_{\rm HCHO} \cdot [{\rm HCHO}]_{\rm TM5} \cdot {\rm scaling_factor}$

- scaling_factor = $[HCHO]_{obs}/[HCHO]_{TM5}$
- Varies in time and space
- Each grid box has its own factor, default 1
- Updated whenever there is a measurement or monthly, to be tested

Multiple challenges for HCHO inversions:

- Generally short, but variable lifetime
- Pronounced diurnal cycle
- Little, but non-negligible transport
- Diurnal cycle in vertical distribution of precursors
- Fast chemistry, highly depended on exact ambient conditions (sun, OH, lots of other VOCs)

 Better CO emission estimates by including observations for both CO and HCHO in the inversion

- Better CO emission estimates by including observations for both CO and HCHO in the inversion
- Research stay cut short by Corona

- Better CO emission estimates by including observations for both CO and HCHO in the inversion
- Research stay cut short by Corona
- Lots of coding left to be done

- The computations were performed on the HPC cluster Aether at the University of Bremen, financed by DFG in the scope of the Excellence Initiative.
- The PhD position is paid for by the University Bremen.
- The travel expenses were covered by the BremenIDEA program of the University of Bremen.
- Special thanks to the TM5 community, especially Maarten Krol and Sourish Basu for provision of and help with the TM5-4DVAR model.
- and of course thank You for your attention