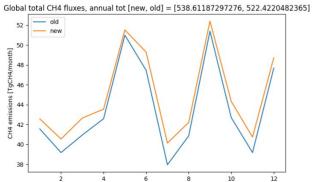


Calculation of XCH₄ for CTE-CH₄ inversion

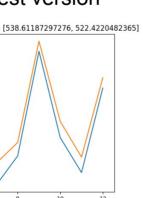
Aki Tsuruta, Tuula Aalto, Hannakaisa Lindqvist, Ella Kivimäki, Tomi Karppinen, Maria Tenkanen, Janne Hakkarainen, Bremen retrieval team, prior providers

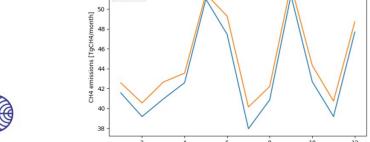
Background

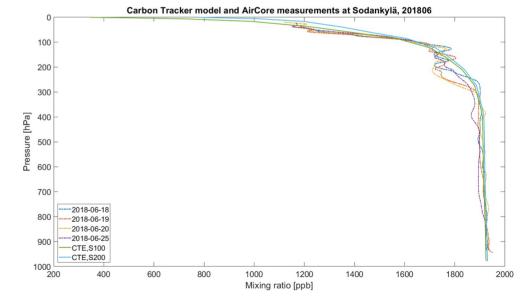
- Methane inversion using TROPOMI XCH₄ data for understanding of seasonality & spatial distribution at NHL.
- We use CTE-CH₄: EnKF based atm. inverse model.
- It can calculate XCH₄ in two ways
 - 1) Inside CTDAS (Python): Class Observations
 - TM5 outputs mixing ratio and pressure profiles for all ensemble members
 - Loop through members for AK and vertical interpolation etc. (very slow)
- 2) Inside TM5
 - AK, interpolation etc will be done in TM5 (based on Liesbeth's XCO₂ code)
 - TM5 outputs XCH₄ for all ensemble members

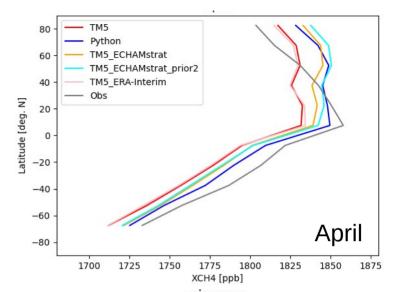


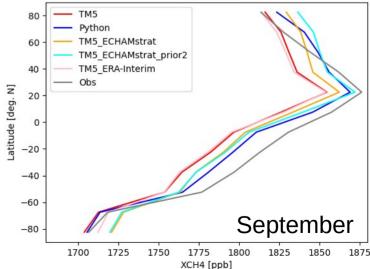
Results in different XCH₄ values...



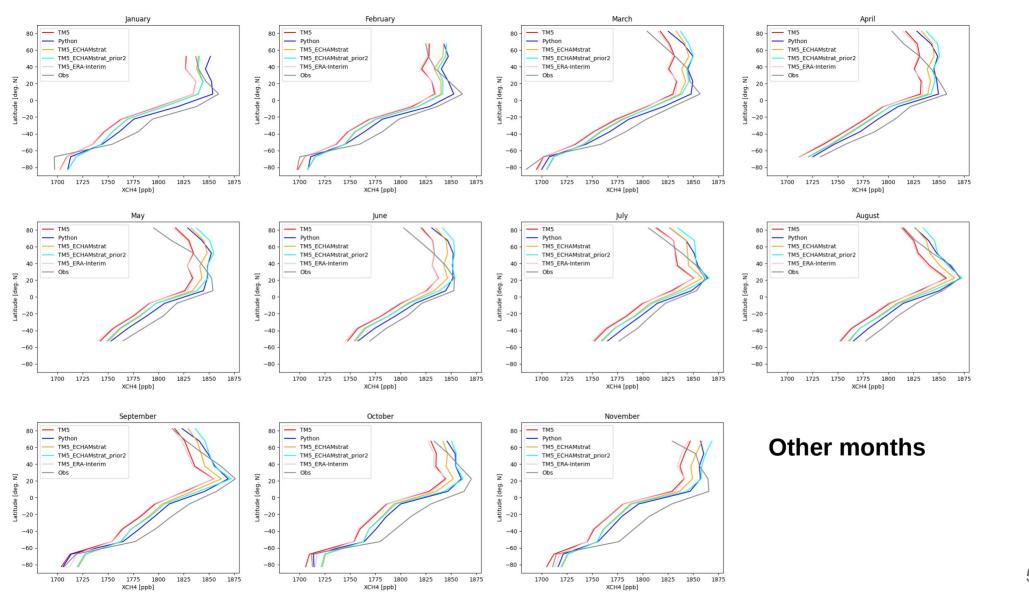

Some other updates...


- Meteorological fields: ERA-Interm → ERA5
- Stratospheric chemistry: TRANSCOM → ECHAM
 - Updates includes e.g. separation of sink reaction to Cl and O(1D)
 - Affects seasonality
- Prior fluxes
 - EDGAR v6.0 (GCP2021) anthropogenic
 - GCP 2021 geological
 - LPX-Bern with latest version



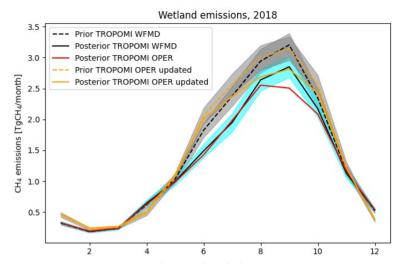

Results

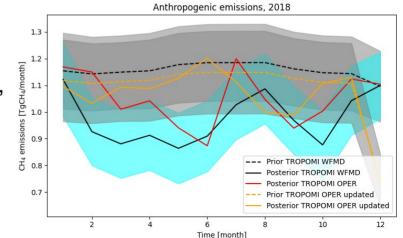
Prior concentrations vs TROPOMI (WFMD)


*average over 15 deg. zmean

- Meteo: differences are small
- Chemistry: difference of about <15 ppb.
- Calc. methods: differences can be ~20 ppb. NH is affected more than SH, and highest in the midlatitudes – possibly due to extrapolation?
- Prior fluxes: Glb total emissions are approx. 15 Tg CH₄ (~3%) higher, and therefore XCH₄ increases

Results


Northern high latitude* fluxes


*Canada, Northern Europe, Russia

	Prior		Posterior		
	Old	New	WFMD	OPER	OPER
					new
Wetlands	16.7	17.4	15.2	14.6	16.5
Anthropogenic	13.8	13.1	11.7	12.6	12.7

- Posterior annual totals are smaller than prior in both cases
- Spring wetland emissions are higher after updates, but still smaller than prior
- Anthropogenic emissions constantly smaller than prior

Other news from FMI

Two papers are submitted :)

- Kangasaho et al., 2021, ACP: Role of emission sources and atmospheric sink on the seasonal cycle of CH₄ and δ^{13} -CH₄: analysis based on the atmospheric chemistry transport model TM5
 - Our code is based on "old" SVN version. Could we make them open to reviewers with e.g. "reviewer's" login?
- Tenkanen et al., 2021, Remote Sensing: Utilizing Earth Observations of Soil Freeze/Thaw data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern Hemisphere

