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e Quantify BB contribution to Oz levels over S. Pacific.
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Introduction
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e Impacts visibility (smog)
¢ Difficulties:

e Secondary pollutant - hard to control through emission mitigation
e Ogj is impacted by:

e Climate/main meteorological patterns

e Hemispheric transport

e Precursor emissions

LAMOS, Nikos Daskalakis 4



e What are the background O3 tendencies over the past two decades
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Burning impact in the S. Pacific

Experiment setup



Station locations and area of interest

Area of study, measurements locations
and ozone vertical distributions for selected stations
(modelled and measured)
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Global TM4

e 3° x 2° horizontal resolution

e 34 hybrid vertical layers up to 65km
e Driven by ECMWF ERA-
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e Analytical chemical scheme.

2015,2016,
2014)

e Thoroughly validated (Daskalakis et al.,

Tsigaridis, Daskalakis, Kanakidou et al.,

ACP, 2016

e Detailed description in Daskalakis et al.,
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Experiment Setup

TM4-ECPL simulation of 1980- 2014 with ERA interim meteorology
Period of study: 1994-2014 (14 years of model stabilization)
2°(lat)x3°(lon)x 34 layers (up to 65km)

Upper boundary of O3 from MLS & GOME-2

Biomass Burning emissions from ACCMIP

e With Biomass Burning emissions
e Without Biomass Burning emissions
e With tagged CO tracers from 13 biomass burning regions
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Burning impact in the S. Pacific

Results - Model validation



Model vs satellites

LAMOS, Nikos Daskalakis

TM4-ECPL vs OMI/MLS mean 10/20040-12/2014
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Model vs measurements (O3)

Timeseries of O; for different altitudes at Samoa (left) and Rapa Nui (right)

Ozone time series over Samoa at 13.1 km b Ozone time series over Rapa Nui at 13.1 km
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Model vs measurements (CO)
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Burning impact in the S. Pacific

Results



Marked tracers

HTAP regions
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Impact of S. America and S. Africa
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Impact of S.E. Asia and Oceania

South East Asia
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BB contribution to CO concentration
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O3 origins breakdown

21 year mean September-October-November concentrations
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O3 origins breakdown
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Burning impact in the S. Pacific

Summary



e Biomass Burning affects the most pristine region of the world
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Biomass Burning affects the most pristine region of the world

CO from Africa reaches the South Pacific following the westerlies

CO from Indonesia

e lifted up in by convection in the warm pool
e split into an eastward and a westward flow

CO from Oceania is lifted less than that from Indonesia

e the bulk of the emissions are subject to the lower troposphere winds

CO from South America in the lower troposphere is separated into two branches.

e one small part blowing towards the Pacific following the trade winds
e another drawn into the southward low-level jet
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Thank you for your attention!

e The computations/simulations were performed on the HPC cluster Aether at the University of
Bremen, financed by DFG within the scope of the Excellence
e Based on publications in preparation:

Impact of biomass burning in the remote South Pacific Ocean, Daskalakis, N. et al., under
review, ACP, 2021
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