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Gridding
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m Superobservation error
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Objective and Motivation



m Reduce data volume and computational cost by gridding, i.e.
aggregating many observation in an area into a single
superobservation

m Based on work by Miyazaki et. al. 2012 !

m Extended / modified to meet requirements of TM5-4dvar
inverse model

'doi.org/10.5194/acp-12-2263-2012
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TROPOMI observations

TROPOspheric Monitoring Instrument
onboard of Sentinel-5 Precursor

Daily global coverage

Local overpass time 13:30

High resolution (up to 7x7 km?)

Especially sensitive to troposphere/boundary layer

Image: ESA



Gridding



The easy approach
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m Set up global, regular grid

m Aggregate any observations in a grid cell into a single

superobservation based on the location of their center
m How to weigh the observations?



Area-weighting
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m Calculate intersection areas w; of footprints y° with each grid

cell

Get area-weighted mean
Can also be applied to averaging kernel, pressure levels, time,

and a-priori profile...
m ... but not to the observational error



Observational error and overlapping footprints

m Observations can contribute to multiple grid cells

m Inflate their error by \/% to keep their weight in the cost
function constant, A; is the total footprint area
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Error deflation and systematic errors

Many independent observations reduce error by /n

Adjacent satellite observations not independent

Correlations in errors form assumptions about albedo etc.

m Eskes et. al. 2003 suggest 0, = 0/ 1= + ¢

Miyazaki et. al. 2012 set ¢ = 15%



Representativeness error

m Handle grid cells on partly covered by observations

m introduce factor fi.,(a) based on the relative coverage
0<a<l1

m Estimate f¢, by artificially reducing coverage and comparing
the resulting superobservations

m We aggregate f., into bins of 1% coverage each

m Only use well covered cells, Miyazaki et. al. 2012 used
a > 90%, we use a > 50 %, to accommodate coarser grids



Representativeness error - intra-annual variations
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m fop, Seems to weakly depend on season, likely due to
differences in land mass between NH and SH
m daily variation has similar magnitude — use one consistent

frep for the whole year
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Representativeness error - latitudinal variations

m Magnitude of £, seems to strongly depend on latitude, likely
linked to distribution of oceans and grid cell size
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Representativeness error - latitudinal variations

m Magnitude of £, seems to strongly depend on latitude, likely
linked to distribution of oceans and grid cell size
m Shape of f.e, appears to be unaffected by latitude
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Representativeness error - latitudinal variations

m Magnitude of f.¢, seems to strongly depend on latitude, likely
linked to distribution of oceans and grid cell size

m Shape of f., appears to be unaffected by latitude
— Calculate global ficp(ax)

— Recalculated f,cp, in 12° latitude bands to get scaling factor

frep(¢) to the global curve

frep(av Qb) = ﬁep(¢) : f;ep(a) (3)
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Total superobservation error

m Representativeness error for a specific coverage and latitude,
based on the area-weighted observation:

07 = frep(a; 8) - Jo. (4)

m Total superobservation error by combing inflation through
representativeness error and deflation through number of

0s = \/02 + 02. (5)

observations:
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Two papers in the making:

m Technical paper, showcasing TROPOMI (super)observations
in TMb5-4dvar
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Summary & Outlook

Two papers in the making:
m Technical paper, showcasing TROPOMI (super)observations
in TMb5-4dvar
— 0.5° x 0.5° superobservation as input for inversion with NH in
3° x 2°
— Investigate large scale emission increments over
Eastern-Europe and decrements over China

m Scientific paper for Californian fires after that
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Inverse Modeling - Mathematical description

m Forward model F

m takes parameters 5 (meteorology, chemistry, ...)
m and state X (emissions)
m yields observation ) (satellite measurements)

y = F(X,p)

ii5)



Inverse Modeling - Mathematical description

m Forward model F

m takes parameters 5 (meteorology, chemistry, ...)
m and state X (emissions)
m yields observation ) (satellite measurements)

7 = F(%,5) + Zo
with observational error £p (error of measurements, model,
and parameters)

ii5)



Inverse Modeling - Cost function

m Least squares approach
m Assume a priori state x,

m Error covariance matrices Sg and Sp
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Inverse Modeling - Cost function

m Least squares approach
m Assume a priori state x,

m Error covariance matrices Sg and Sp

N (obs — model(state))?

Cost = 2
€ITOr b
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Inverse Modeling - Cost function

m Least squares approach
m Assume a priori state x,

m Error covariance matrices Sg and Sp

state — ¢ jori)? bs — del(stat z
Cost — (state — a priori) +(0 bs — model(state))

(‘rrorapn2 €ITOT o2
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Inverse Modeling - Cost function

m Least squares approach
m Assume a priori state x,

m Error covariance matrices Sg and Sp

(state — a priori)? . (obs — model(state))?
EITOT pri2 EITOT ohs?

J(x) = (X = xa) TS (X = xa)  +(7 — F()7Sp' (7 — F(x))

Cost =
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Inverse Modeling - Cost function

m Least squares approach
m Assume a priori state x,

m Error covariance matrices Sg and Sp

Cost — (state — a priori)? (obs — model(state))?
ost = EITOT pri2 i EITOT ohs?
apri obs

J(x) = (X = xa) TS (X = xa)  +(7 — F()7Sp' (7 — F(x))

m Repeat cycle of forward — correcting — inverse until
mismatch is sufficiently small
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