

Creating TROPOMI super observations for use in TM5-4dvar

Johann Rasmus Nüß

Fabian Piwowaczyk and Mihalis Vrekoussis

LAMOS group, IUP, University Bremen

1 Objective and Motivation

2 Gridding

- Area-weighting approach
- Superobservation error
- 3 Summary & Outlook

Objective and Motivation

- Reduce data volume and computational cost by gridding, i.e. aggregating many observation in an area into a single superobservation
- Based on work by Miyazaki et. al. 2012¹
- Extended / modified to meet requirements of TM5-4dvar inverse model

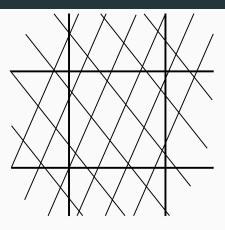
¹doi.org/10.5194/acp-12-2263-2012

TROPOMI observations

- TROPOspheric Monitoring Instrument onboard of Sentinel-5 Precursor
- Daily global coverage
- Local overpass time 13:30
- High resolution (up to $7 \times 7 \text{ km}^2$)
- Especially sensitive to troposphere/boundary layer

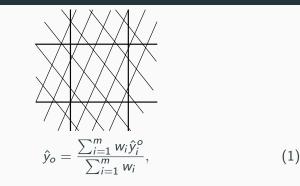
Gridding

The easy approach



- Set up global, regular grid
- Aggregate any observations in a grid cell into a single superobservation based on the location of their center
- How to weigh the observations?

Area-weighting



- Calculate intersection areas w_i of footprints ŷ^o_i with each grid cell
- Get area-weighted mean
- Can also be applied to averaging kernel, pressure levels, time, and a-priori profile...
- ... but not to the observational error

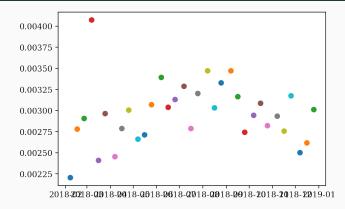
- Observations can contribute to multiple grid cells
- Inflate their error by $\sqrt{\frac{A_i}{w_i}}$ to keep their weight in the cost function constant, A_i is the total footprint area

$$\sigma = \frac{\sum_{i=1}^{m} \sqrt{\frac{A_i}{w_i}} w_i \sigma_i^o}{\sum_{i=1}^{m} w_i} = \frac{\sum_{i=1}^{m} \sqrt{A_i w_i} \sigma_i^o}{\sum_{i=1}^{m} w_i}$$
(2)

- Many independent observations reduce error by \sqrt{n}
- Adjacent satellite observations not independent
- Correlations in errors form assumptions about albedo etc.
- Eskes et. al. 2003 suggest $\sigma_o = \sigma \sqrt{\frac{1-c}{n} + c}$
- Miyazaki et. al. 2012 set c = 15%

- Handle grid cells on partly covered by observations
- introduce factor $f_{rep}(\alpha)$ based on the relative coverage $0 \le \alpha \le 1$
- Estimate f_{rep} by artificially reducing coverage and comparing the resulting superobservations
- \blacksquare We aggregate $\mathit{f}_{\mathrm{rep}}$ into bins of 1 % coverage each
- Only use well covered cells, Miyazaki et. al. 2012 used $\alpha > 90$ %, we use $\alpha > 50$ %, to accommodate coarser grids

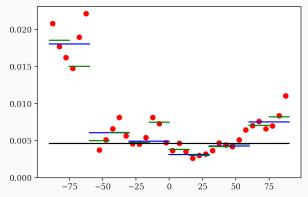
Representativeness error - intra-annual variations



- f_{rep} seems to weakly depend on season, likely due to differences in land mass between NH and SH
- daily variation has similar magnitude \rightarrow use one consistent $f_{\rm rep}$ for the whole year

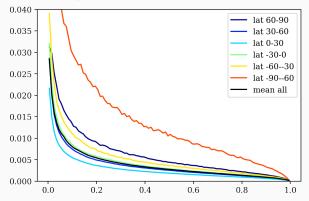
Representativeness error - latitudinal variations

 Magnitude of f_{rep} seems to strongly depend on latitude, likely linked to distribution of oceans and grid cell size



Representativeness error - latitudinal variations

- Magnitude of f_{rep} seems to strongly depend on latitude, likely linked to distribution of oceans and grid cell size
- Shape of f_{rep} appears to be unaffected by latitude



- Magnitude of f_{rep} seems to strongly depend on latitude, likely linked to distribution of oceans and grid cell size
- Shape of f_{rep} appears to be unaffected by latitude
- \rightarrow Calculate global $f_{\rm rep}(\alpha)$
- \to Recalculated $f_{\rm rep}$ in 12° latitude bands to get scaling factor $\bar{f}_{rep}(\phi)$ to the global curve

$$f_{rep}(\alpha, \phi) = \bar{f}_{rep}(\phi) \cdot f_{rep}(\alpha)$$
(3)

 Representativeness error for a specific coverage and latitude, based on the area-weighted observation:

$$\sigma_r = f_{\rm rep}(\alpha, \phi) \cdot \hat{y}_o. \tag{4}$$

 Total superobservation error by combing inflation through representativeness error and deflation through number of observations:

$$\sigma_s = \sqrt{\sigma_o^2 + \sigma_r^2}.$$
 (5)

Summary & Outlook

 Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar

- Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar
- $\rightarrow~0.5^{\circ}\times0.5^{\circ}$ superobservation as input for inversion with NH in $3^{\circ}\times2^{\circ}$

- Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar
- $\rightarrow~0.5^{\circ}\times0.5^{\circ}$ superobservation as input for inversion with NH in $3^{\circ}\times2^{\circ}$
- $\rightarrow\,$ Investigate large scale emission increments over Eastern-Europe and decrements over China

- Technical paper, showcasing TROPOMI (super)observations in TM5-4dvar
- $\rightarrow~0.5^{\circ}\times0.5^{\circ}$ superobservation as input for inversion with NH in $3^{\circ}\times2^{\circ}$
- $\rightarrow\,$ Investigate large scale emission increments over Eastern-Europe and decrements over China
 - Scientific paper for Californian fires after that

- The computations were performed on the HPC cluster Aether at the University of Bremen, financed by DFG in the scope of the Excellence Initiative.
- The PhD position is paid for by the University Bremen.
- Special thanks to the TM5 community, especially Maarten Krol and Sourish Basu for provision of and help with the TM5-4DVAR model.
- ... and of course thank You for your attention

Forward model F

- takes parameters \vec{p} (meteorology, chemistry, ...)
- and state \vec{x} (emissions)
- yields observation \vec{y} (satellite measurements)

 $\vec{y} = \mathbf{F}(\vec{x}, \vec{p})$

Forward model F

- takes parameters \vec{p} (meteorology, chemistry, ...)
- and state \vec{x} (emissions)
- yields observation \vec{y} (satellite measurements)

 $\vec{y} = \mathbf{F}(\vec{x}, \vec{p}) + \vec{\varepsilon}_{O}$

with observational error $\vec{\varepsilon}_O$ (error of measurements, model, and parameters)

- Least squares approach
- Assume a priori state $\vec{x_A}$
- Error covariance matrices S_0 and S_A

- Least squares approach
- Assume a priori state $\vec{x_A}$
- Error covariance matrices S_0 and S_A

+

Cost =

- Least squares approach
- Assume a priori state $\vec{x_A}$
- Error covariance matrices S₀ and S_A

$$Cost = + \frac{(obs - model(state))^2}{error_{obs}^2}$$

- Least squares approach
- Assume a priori state $\vec{x_A}$
- Error covariance matrices S_0 and S_A

$$Cost = \frac{(state - a \text{ priori})^2}{error_{apri}^2} + \frac{(obs - model(state))^2}{error_{obs}^2}$$

- Least squares approach
- Assume a priori state $\vec{x_A}$
- Error covariance matrices S_0 and S_A

$$Cost = \frac{(state - a \text{ priori})^2}{error_{apri}^2} + \frac{(obs - model(state))^2}{error_{obs}^2}$$
$$J(\vec{x}) = (\vec{x} - \vec{x_A})^T \mathbf{S}_{\mathbf{A}}^{-1} (\vec{x} - \vec{x_A}) + (\vec{y} - \mathbf{F}(\vec{x}))^T \mathbf{S}_{\mathbf{0}}^{-1} (\vec{y} - \mathbf{F}(\vec{x}))$$

- Least squares approach
- Assume a priori state $\vec{x_A}$
- Error covariance matrices S_0 and S_A

$$Cost = \frac{(state - a \text{ priori})^2}{error_{apri}^2} + \frac{(obs - model(state))^2}{error_{obs}^2}$$
$$J(\vec{x}) = (\vec{x} - \vec{x_A})^T \mathbf{S}_{\mathbf{A}}^{-1} (\vec{x} - \vec{x_A}) + (\vec{y} - \mathbf{F}(\vec{x}))^T \mathbf{S}_{\mathbf{0}}^{-1} (\vec{y} - \mathbf{F}(\vec{x}))$$

■ Repeat cycle of forward → correcting → inverse until mismatch is sufficiently small