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Objective and Motivation



Objective

Reduce data volume and computational cost by gridding, i.e.

aggregating many observation in an area into a single

superobservation

Based on work by Miyazaki et. al. 2012 1

Extended / modified to meet requirements of TM5-4dvar

inverse model

1doi.org/10.5194/acp-12-2263-2012
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TROPOMI observations

TROPOspheric Monitoring Instrument

onboard of Sentinel-5 Precursor

Daily global coverage

Local overpass time 13:30

High resolution (up to 7×7 km2)

Especially sensitive to troposphere/boundary layer

Image: ESA
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Gridding



The easy approach

Set up global, regular grid

Aggregate any observations in a grid cell into a single

superobservation based on the location of their center

How to weigh the observations?
5



Area-weighting

ŷo =

∑m
i=1 wi ŷ

o
i∑m

i=1 wi
, (1)

Calculate intersection areas wi of footprints ŷoi with each grid

cell

Get area-weighted mean

Can also be applied to averaging kernel, pressure levels, time,

and a-priori profile...

... but not to the observational error 6



Observational error and overlapping footprints

Observations can contribute to multiple grid cells

Inflate their error by
√

Ai
wi

to keep their weight in the cost

function constant, Ai is the total footprint area

σ =

∑m
i=1

√
Ai
wi
wiσ

o
i∑m

i=1 wi
=

∑m
i=1

√
Aiwiσ

o
i∑m

i=1 wi
(2)
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Error deflation and systematic errors

Many independent observations reduce error by
√
n

Adjacent satellite observations not independent

Correlations in errors form assumptions about albedo etc.

Eskes et. al. 2003 suggest σo = σ
√

1−c
n + c

Miyazaki et. al. 2012 set c = 15%
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Representativeness error

Handle grid cells on partly covered by observations

introduce factor frep(α) based on the relative coverage

0 ≤ α ≤ 1

Estimate frep by artificially reducing coverage and comparing

the resulting superobservations

We aggregate frep into bins of 1 % coverage each

Only use well covered cells, Miyazaki et. al. 2012 used

α > 90 %, we use α > 50 %, to accommodate coarser grids

9



Representativeness error - intra-annual variations

frep seems to weakly depend on season, likely due to

differences in land mass between NH and SH

daily variation has similar magnitude → use one consistent

frep for the whole year
10



Representativeness error - latitudinal variations

Magnitude of frep seems to strongly depend on latitude, likely

linked to distribution of oceans and grid cell size

Shape of frep appears to be unaffected by latitude

→ Calculate global frep(α)

→ Recalculated frep in 12◦ latitude bands to get scaling factor

f̄rep(φ) to the global curve

frep(α, φ) = f̄rep(φ) · frep(α) (3)
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Total superobservation error

Representativeness error for a specific coverage and latitude,

based on the area-weighted observation:

σr = frep(α, φ) · ŷo . (4)

Total superobservation error by combing inflation through

representativeness error and deflation through number of

observations:

σs =
√
σ2o + σ2r . (5)
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Summary & Outlook

Two papers in the making:

Technical paper, showcasing TROPOMI (super)observations

in TM5-4dvar

→ 0.5◦ × 0.5◦ superobservation as input for inversion with NH in

3◦ × 2◦

→ Investigate large scale emission increments over

Eastern-Europe and decrements over China

Scientific paper for Californian fires after that
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Inverse Modeling - Mathematical description

Forward model F

takes parameters ~p (meteorology, chemistry, ...)

and state ~x (emissions)

yields observation ~y (satellite measurements)

~y = F(~x , ~p)

+ ~εO

with observational error ~εO (error of measurements, model,

and parameters)
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Inverse Modeling - Cost function

Least squares approach

Assume a priori state ~xA

Error covariance matrices SO and SA

Cost =

(state− a priori)2

errorapri2

+

(obs−model(state))2

errorobs2

J(~x) = (~x − ~xA)TS−1
A (~x − ~xA) +(~y − F(~x))TS−1

O (~y − F(~x))

Repeat cycle of forward → correcting → inverse until

mismatch is sufficiently small
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