CarbonTracker Europe inverse modeling update from Wageningen

Wouter Peters, Gerbrand Koren, Liesbeth Florentie, Ingrid Luijkx, Remco de Kok, Anne-Wil van den Berg

A statevector in data assimilation

а	b					

A statevector in data assimilation

p0	p1	p2	р3	p4	••	 	 	

A statevector in weather data assimilation

Sea Level Pressure January 2021 Monthly Mean

A statevector in CO₂ data assimilation

TRANSCOM

$f(x) = F_{ff} + F_{fire}$ + f1 + f2. . .

The first CarbonTracker statevector

TRANSCOM + OLSON

 $f(x) = F_{ff} + F_{fire} + f1 * F_{con}(t) + f2 * F_{broad}(t) + ... + f240 * F_{oce}$

The current CarbonTracker statevector

TRANSCOM + OLSON + NH 1x1

 $f(x) = F_{ff} + F_{fire} + f1 * F_{con} (1,1,t) + f2 * F_{broad} (1,2,t) + ... + f9835 * F_{oce}$

The current Carbon Tracker statevector

TRANSCOM +**OLSON** +**NH 1x1**

Covariances become really important to keep the system well-behaved!

CarbonTracker Statistical Fit (CTSF): Long-window inversion for biosphere flux

Goals

- Separate long- from short time scales in inversion, and:
 - Better constrain slow processes with CO₂
 - use other proxies and satellite data of XCO2, XNO2, XCO, ... for hi-res
 - Detect trends from seasonal to decadal time scales
 - Use direct observations of NEE proxies to capture anomalies
- CTSF framework (long time scales) being developed and applied for CO₂ and $\delta^{13}C$ (Gerbrand, soon Joram), based on initial work by Liesbeth Florentie

How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO₂ data

Christian Rödenbeck¹, Sönke Zaehle¹, Ralph Keeling², and Martin Heimann^{1,3}

A new CarbonTracker statevector

Inspired by Rödenbeck et al., (2019)

Assumptions

Mean NEE per ecoregion \rightarrow polynomial function + harmonics of yearly cycle

$$NEE(x, y, t) = x_0 + x_1 t + x_2 t^2 + \sum_{n=1}^{4} \left[\left(a_n + b_n t \right) \sin\left(\frac{2\pi}{T} n t \right) + \left(c_n + d_n t \right) \cos\left(\frac{2\pi}{T} n t \right) \right]$$

Long-term mean, seasonal cycle, temporal trend

SiB4 output: statistical fit (US-Ha1)

A new CarbonTracker statevector

Inspired by Rödenbeck et al., (2019)

Assumptions

$$NEE(x, y, t) = x_0 + x_1 t + x_2 t^2 + \sum_{n=1}^{4} \left[\left(a_n + b_n t \right) \sin\left(\frac{2\pi}{T} n t \right) + \left(c_n + d_n t \right) \cos\left(\frac{2\pi}{T} n t \right) \right]$$

Long-term mean, seasonal cycle, temporal trend

+
$$\gamma^P \Delta P(x, y, t)$$

spatial & interannual variability

• Mean NEE per ecoregion \rightarrow polynomial function + harmonics of yearly cycle • Linear correlation between variations in NEE and a proxy (T, VPD, SIF, or NIR_V)

Statevector **x**:

- One set of parameters per ecoregion
- Sensitivities (_v) additionally vary per calendar month
- \rightarrow For n=4: 31*134 = 4154 parameters

NIR_v and SIF good proxies for photosynthesis

- Near-infrared reflectance of terrestrial vegetation (NIR_v)
 - = total near-infrared reflectance * NDVI
- Sun-induced fluorescence (SIF)
 - photosynthesis

Satellite measurements

= re-emission at longer wavelengths of part of the absorbed solar radiation during

SIF and NIR_v good proxies for photosynthesis

Fig. 2. Comparison of multiyear monthly mean (A) SIF and (B) NIR_v against global data-driven GPP estimates. SIF estimates come from GOME-2 data averaged monthly and regridded to 0.5°. MODIS NIR_v estimates were aggregated to 0.5° from 500-m scenes of BRDF-corrected reflectances. GPP estimates come from the Max Planck Institute upscaling approach (16). Shading indicates the logged number of pixels within each bin.

GPP (FLUXCOM) versus satellite SIF (GOME-2) and NIR_V (MODIS)

SIF and NIR_v good proxies for photosynthesis

SIF and NIR_v good proxies for photosynthesis

Large negative anomalies in SIF and NIR_V during Russian drought, July 2010

Proxy datasets

SIF:

- GOME-2A (SIFTER v2, KNMI)
- Monthly averages, 2007-2017
- 0.5 x 0.5 deg

NIR_v:

- MODIS surface reflectance (Schaaf and Wang 2015)
- Monthly averages, 2000-2018
- 0.05 x 0.05 deg

Anomalies:

- Grid cell deviation from ecoregion mean seasonal cycle
- Downscaled to 1 x 1 deg

Statistical model as basis for long-window CO₂ inversion

Inspired by Rödenbeck et al., (2019)

Implementation: New statevector and observation operator in CTE code

First test of system:

- 5-year run: 2009 2015 (SIF, NIRv proxy) 10-year run: 2007 - 2016 (SIF, NIRv proxy)
- 20-year run: 2000 2018 (T-proxy)
- 100 ensemble members
- Atmospheric transport on 6x4 deg grid
- Fossil fuel, fire & ocean flux as CTE2018
- Flask measurements, 64 locations:

Gerbrand and Liesbeth's work

residuals of CTSF vs CTE

• RMSE of CTSF a bit higher than CTE, but mean bias a bit lower

Preliminary conclusions

New inversion set-up:

- Large reduction computational cost for long-window runs
- Mean seasonal cycle & temporal trend per ecoregion can be approximated with simple statistical function
- \blacksquare T, SIF and NIR_V data can add physical spatiotemporal patterns in NEE field • Flexible enough to optimize model parameters based on limited set of CO_2
- observations

Work in progress:

- Long temporal window runs required to really test potential of approach
- Improve proxy datasets, also test vapor pressure deficit?
- Work on short-window inversions, starting from CTSF posterior

Goal: Long-window CO_2 inversion with observed spatiotemporal patterns NEE

The current CarbonTracker statevector

Correlation between 1x1 grids

Per TransCom region, per ecoregion, exponential decay with L=100 km

The "Problem"

- Past inspection found unphysical CO2 fields and fluxes
- Large variations on small spatial and temporal scales

CO2 (ppm) at lowest level

Extreme fluxes get transported vertically

• Now: average bottom 3 layers

Level 0

b) original

Level 3

CO2_bio (ppm)

Initial idea: smooth fluxes as correlations

• Doesn't change extremes. Why?

a) smoothed

Remco de Kok's work

Europe Conifer Forest

Scaling factor

Remco de Kok's work

11

-11

Scaling factor

• Small, isolated region

Remco de Kok's work

11

-11

Small regions, high variability

- Prior errors higher there
- Less constraints from other grid cells
- Smoothing per region will help less here

Small regions, high variability

- Prior errors higher there
- Less constraints from other grid cells
- Smoothing per region will help less here

New inversions (orange)

• Limit prior error for small regions

