

Modelling CO³⁴S: the effect of vertical resolution on transport to the stratosphere

TM meeting, October 2023, Crete

Maarten Krol & Jin Ma & Sophie Baartman Utrecht University & Wageningen University

European Research Council

Established by the European Commission

SS

http://cos-ocs.eu/3rd-international-cos-works.html

What is the contribution of **COS to the stratospheric** sulphate aerosol layer?

Can the global budgets of COS and CO₂ be reconciled, and what are the implications for terrestrial gross primary productivity?

S-OCS

COS Budget Prior

S

S-O

Sources		
Direct COS from Oceans	40	GgS/yr
Indirect COS as DMS from Oceans	GgS/yr	
Indirect COS as CS2 from Oceans	GgS/yr	
Direct Anthropogenic	155	GgS/yr
Indirect Anthropogenic as CS2	GgS/yr	
Biomass Burning	GgS/yr	
Unknown	GgS/yr	
Total sources	GgS/yr	

Sinks		
Destruction by OH in troposphere	-10 1	GgS/yr
Uptake by Canopy & Soils	-1.053	GgS/yr
Stratospheric removal	-40	GgS/yr
Total sources	-1.194	GgS/yr

Optimised COS budget

C-S

Budgets of COS, CS₂ and DMS: Global

Posterior Fluxes over the Amazon

Prior

NOAA only

MIPAS only

MIPAS + NOAA (no bias correction) S1

MIPAS + NOAA (bias correction) S1

MIPAS + NOAA (bias correction) S0

MIPAS + NOAA (bias correction) SCS2

-400

SCS2 – 10% error on biosphere

SCS2 = 10% error on COS biosphere, 150% error on CS₂ emissions

This presentation

- Implemented CO³²S & CO³⁴S
- Scattered information available
- were bad
- StratoClim2017 (Indian Monsoon) samples were OK
- Modelling ³⁴S of COS (3 x 2 degree)
- Used this project to investigate different vertical resolutions

• HEMERA flight (KLIMAT2021) sampled stratosphere, but samples

Sophie Baartman, Utrecht, Thesis Defence 11-10-2023

StratoClim2017

Category	Flux	$\delta^{34}S~(\%)$	ϵ^{34} (‰)		S	%
COS unknown	426.7	14.7	-			
COS biomass	142.2	8.0	-		32	95.02
COS anthropogenic	161.3	8.0	_			
COS ocean	40.7	14.7	-		33	0.75
CS ₂ anthropogenic	236.4	8.0	-			
CS_2 ocean	83.2	14.7	-		31	/ 21
DMS land	6.1	-	-		04	7.21
DMS ocean	154.9	14.7	-			
COS biosphere	-1066.4	-	-1.9		36	0.02
OH-oxidation	-	-	-2.56			
Photolysis	-	-	-3	00.04		$^{33,34}S$
				33,34	R =	$\overline{32S}$

$${}^{33,34}\epsilon = \frac{{}^{33,34}k}{{}^{32}k} - 1$$

SDO-S

 $\delta^{33,34}S = \frac{R_{sample}^{33,34}}{R_{standard}^{33,34}} - 1$

9

Sophie Baartman, Utrecht, Thesis Defence 11-10-2023

Sophie Baartman, Utrecht, Thesis Defence 11-10-2023

S

S-O

11

This project has received funding from the European Research Council (ERC) under the European Union's H2020 research and innovation programme under grant agreement No 742798

SDO-SC

Month 4

S-OCS

O-S

adds all sources and sinks from Table 5.2 and this table.

Category	137 layers	68 layers	50 layers	25 layers	68 layers div $(%)$	50 layers div $(\%)$	25 layers div (%)
OH Loss	-108.9	-108.9	-108.7	-107.7	-0.1	-0.2	-1.1
Photolysis	-37.5	-37.3	-37.8	-42.0	-0.4	0.9	12.0
Chemical Loss	-146.4	-146.2	-146.5	-149.7	-0.2	0.1	2.2
Net	38.8	39.0	38.7	35.5	0.6	-0.2	-8.4

Table 5.3: COS global chemical removal terms for four vertical resolutions, with unit in GgS a^{-1} . The differences are calculated relative to the 137 layer model in percentage. Note that the prior surface fluxes of emissions and uptake are also provided in Table 5.2 and the Net budget

Conclusions

- COS simulations with isotopes
- Stratospheric removal: currently too little fractionation

• Resolution effects: 25 layers too diffusive, 50 or 68 layers OK (w.r.t. 137)