Use of a monthly varying error description of the

biospheric CH₄ prior in an inversion model

Maria Tenkanen, Aki Tsuruta and Tuula Aalto

2023/10/16 34th International TM5 Meeting

Use of a monthly varying error description of the biospheric CH₄ prior in an inversion model

- Defining new uncertainty limits for biospheric CH₄ emissions
- Inversion setup
- Flux estimates: comparison between the results using the old and new uncertainty limits
- Comparison to observations

The old way

- 80% of the used biospheric prior
 - -> smaller fluxes have smaller assigned uncertainty
 - -> uncertainties of biospheric and anthropogenic fluxes in the same area are dependend on their (relative) magnitude

The new way

- Based on the process models used in the Global Carbon Project (Saunois et al. 2020)
 - Prognostic (models used their own internal approach to estimate wetland area and dynamics)
- Monthly averages 2010-2017 -> monthly uncertainties

GCP process models

Large spread in the process model estimates

-> range of the lowest and highest 25% divided by the prior

-> max uncertainty 500% and min uncertainty 10% of the prior

Differences between the old and new uncertainties: July

• Uncertainty estimate reduced in some regions and increased in other regions

Differences between the old and new uncertainties: January

• Norhtern high latitude (our focus area): wintertime uncertainty estimate smaller

Inversion model setup CarbonTracker Europe – CH₄

Priors

- Anthropogenic: EDGAR v6
- Biospheric: LPX-Bern DYPTOP
- Others: GFED v4.1s (fire), Saunois et al. (2020) (termites), Weber et al. (2019) (ocean)

Optimization

- Biospheric (wetlands + soil sink) and anthropogenic emissions are optimized simultaneously
- Assimilated observations: surface measurements
- 1° x 1° resolution (with some spatial correlation) in Canada, USA, Europe and Russia. Elsewhere by region-wise.
- 7-day temporal resolution
- Ensemble Kalman Filter, 500 memebers
- •2010-2021

TM5

- Constrained by ERA5 meteorology (3-hourly)
- Horizontal resolutions: 6° x 4° (glb) + 1° x 1° (eun)
- Vertical levels: 25

Optimization regions and in situ sites

Time series figures

- Annual values 2010-2021
- Mainly biospheric
- Prior with --, posteriors with —
- Old in black, new in blueish

Bio uncertainty remained at the same level

Increase in bio emissions from 2016 onwards -> decrease in anthropogenic emissions

Priors

Posteriors

Bio uncertainty remained at the same level

Global CH₄ emissions

Increase in bio emissions from 2016 onwards -> decrease in anthropogenic emissions

Bio uncertainty remained at the same level

Global CH₄ emissions

Increase in bio emissions from 2016 onwards -> decrease in anthropogenic emissions

CTE LPX2021 BioCovMonthly, average bio flux

Biospheric CH₄ flux difference [mol $m^{-2} s^{-1}$]

Biospheric CH₄ flux [mol m⁻² s⁻¹]

Northern high latitudes CH₄ emissions Bio uncertainty ~4 times higher than old unc

Large increase in posterior bio CH₄ emissions from 2016 onwards

Northern high latitudes CH₄ emissions

Bio uncertainty ~4 times higher than old unc

Large increase in posterior bio CH₄ emissions from 2016 onwards

Increase not only in summer but also in winter

Bio uncertainty over 3 times higher than old unc

Western Siberian Lowlands CH₄ emissions

Large increase in posterior bio CH₄ emissions from 2015 onwards

Smaller decrease in anthropogenic posterior emissions than the increase in biospheric

Bio uncertainty over 4 times higher than old unc

Hudson Bay Lowlands CH₄ emissions

Large increase in posterior bio CH₄ emissions from 2016 onwards

Negligible anthropogenic emissions

Comparison to assimilated mole fraction measurements

Smaller bias and RMSE compared to the assimilated measurements when using the new uncertainty estimates

With new method: larger uncertainties -> more trust in measurements

Main points

Process model

• Their estimates have a large range

New uncertainty limits

• Sometimes smaller but mainly larger than the old way to define (80%)

Emission estimates

- Globally emissions remained the same
- Different emission distributions spatially and between biospheric and anthropogenic emissions categories

To do and questions to ask

TM5 resolution

- Too coarse? Grid lines showing?
- -> TM5-MP?

2016 ->

• What caused the large increase in the posterior emissions in norhtern high latitudes?

Fire emissions

- In 2021, GFED showed extremely large CH4 emissions in norhtern high latitudes, which had clear effect on posterior emissions
- GFED v5 should be out soon

Something else?

• What would be the interesting questions to ask?