



# Inverse modelling of CH<sub>4</sub> emissions in permafrost regions

## with TM5-MP/4DVAR

Santiago Parraguez Cerda - PhD. Candidate

Laboratory for Modeling and Observation of the Earth System (LAMOS) Institute of Environmental Physics (IUP), University of Bremen, Germany Supervised by Maria Kanakidou and Mihalis Vrekoussis

TM Meeting – 16 / 17 October 2023

## Methane $(CH_4)$

Methane is a Greenhouse Gas (GHG) with a long lifetime (over a decade) and a Global Warming Potential (GWG) of 32 in the 100-year horizon <sup>[1]</sup>

#### Evolution of the atmosphere global mole fraction, growth rate and budget of methane for the past three decades



Source: Kirschke, S. et al. (2013) Three decades of global methane sources and sinks.

emissions (B-U)

Other

Evolution of the atmosphere global mole fraction, growth rate and budget of methane for the past three decades



Source: Kirschke, S. et al. (2013) Three decades of global methane sources and sinks.

1922,2 ppb in



### Permafrost

Permafrost is defined as frozen soil, sediment, or rock having temperatures at or below 0°C for at least 2 consecutive years <sup>[2]</sup>

[2] Harris and Pedersen (1998). Thermal regimes beneath coarse blocky materials. In *Permafrost and Periglacial Processes*.

### Relevance of permafrost

## Contains ~1,300 Pg of organic carbon. <sup>[3]</sup>

Thawing of permafrost releases carbon as  $CO_2$  and  $CH_4$ 

## Drives a **positive feedback** on **climate change**

[3] Hugelius et al. (2014) Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps.



## Inverse modeling of emissions

TM5-MP / 4DVAR

## Inverse modeling of emissions



### Measurements and remote observations

- Stations flask measurements
- Satellite instrument observations

## Stations flask measurements

Station locations from NOAA network



Permafrost region



11

## Remote observations: TROPOMI

High resolution (  $7.0 \times 3.6 \text{ km}^2$ )

Global daily coverage

Continuous data since November 2017

Improved retrieval (WFMD CH<sub>4</sub> product) covers high latitudes <sup>[4]</sup>

[4] Schneising et al. (2023). Advances in retrieving XCH4 and XCO from Sentinel-5 Precursor: improvements in the scientific TROPOMI/WFMD algorithm. In *Atmos. Meas. Tech.* 

TROPOMI mean  $XCH_4$  for 2018







#### Emission categories for inversion, yearly mean

| Category   | [Tg/year] |  |  |
|------------|-----------|--|--|
| Wetlands   | 188,3     |  |  |
| Rice       | 36,3      |  |  |
| B. burning | 14,4      |  |  |
| Other      | 338,0     |  |  |
| Total      | 577,3     |  |  |



## **Inversion preliminary results**

- Single year simulation (6 months of spin-up) for 2018
- Inversion with only stations and with both stations and satellite

#### Inversion for Jul-Dec 2018 NOAA sample and TROPOMI

Station ALT (82.45° N, 62.52° W, 210 m)



#### Model concentration interpolation to satellite layers



#### **Inversion for Jul-Dec 2018, global view** NOAA sample and TROPOMI



#### **Inversion for Jul-Dec 2018, northern region view** NOAA sample and TROPOMI

 $CH_4$  emissions [Tg/month]

Mean a priori emissions

Mean a posteriori emissions



ALL CALLE

Difference

 $-10^{-1}-10^{-3}$  0  $10^{-3}$   $10^{-1}$  $\Delta CH_4 \text{ emissions [Tg/month]}$ 





# Inverse modelling of CH<sub>4</sub> emissions in permafrost regions

## with TM5-MP/4DVAR

Santiago Parraguez Cerda - PhD. Candidate

Laboratory for Modeling and Observation of the Earth System (LAMOS) Institute of Environmental Physics (IUP), University of Bremen, Germany Supervised by Maria Kanakidou and Mihalis Vrekoussis

TM Meeting – 16 / 17 October 2023

#### Inversion for Jul-Dec 2018 NOAA sample and TROPOMI



#### **Inversion for Jul-Dec 2018, northern region view** NOAA sample and TROPOMI



#### **Inversion for Jul-Dec 2018**, mean emissions by category NOAA sample and TROPOMI



## Year emissions comparison by category

| Category   | A priori<br>[Tg/year] | A posteriori<br>[Tg/year] | Difference<br>[Tg/year] | Relative<br>difference [%] |
|------------|-----------------------|---------------------------|-------------------------|----------------------------|
| Wetlands   | 188,3                 | 188.,0                    | -0,23                   | -0,12                      |
| Rice       | 36,3                  | 36,6                      | -0,05                   | -0,14                      |
| B. burning | 14,4                  | 14,3                      | -0,13                   | -0,94                      |
| Other      | 338,0                 | 345,8                     | 7,84                    | 2,32                       |
| Total      | 577,3                 | 584,7                     | 7,42                    | 1,29                       |

#### **Inversion for Jul-Dec 2018**, monthly total emissions NOAA sample and TROPOMI

![](_page_23_Figure_1.jpeg)