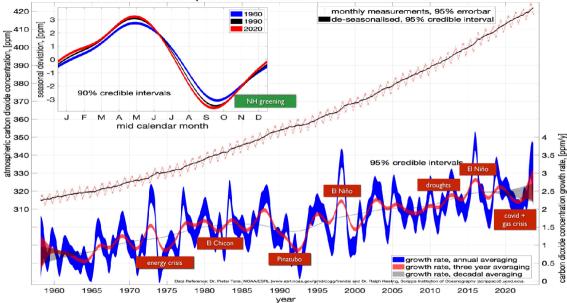
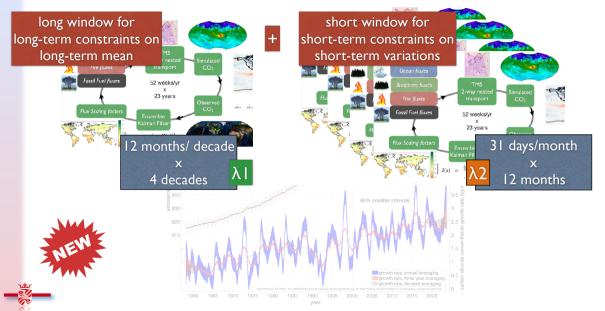

Development of a long-window/short window data assimilation system


Joram Hooghiem, John B. Miller, Aleya Kaushik, Auke van der Woude, Anne-Wil van den Berg, Marnix van de Sande, Remco de Kok, Ingrid Luijkx, Wouter Peters

October 21, 2024

45 year inversion of CO₂ transport $3^{\circ} \times 2^{\circ} \times 34$



Mauna Loa Atmospheric Carbon Dioxide Concentration and Growth Rate

CarbonTracker Europe long-window short-window (LWSW)

CarbonTracker Europe long-window short-window (LWSW)

Long window inversion system

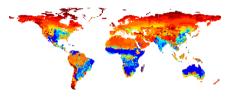
- Single window
- Multi-decadal estimates
- Cheap to run
- no adjoint
- no propagation

Long-Window algorithm

Setup state Create ensemble Transport ensemble (TM5) Ensemble Kalman Filter Exit

- Global 3°x2°x34
- 45 years CO₂-only
- Wall-clock time: 1 week

LW constraint: atmospheric data

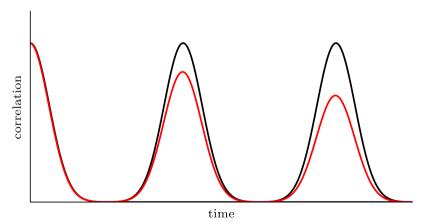

Setting up the sate

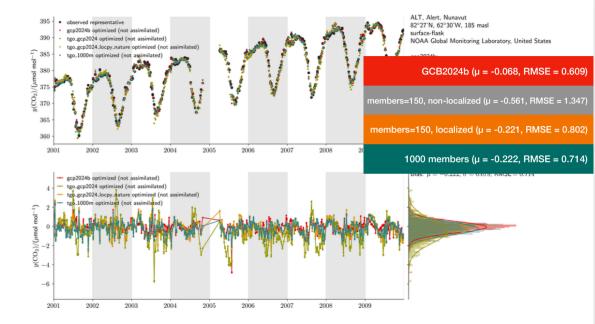
- Scaling factors λ (ocean,GPP ,TER-clim)
- **P**_s Spatially like CT(E): 30 ocean basins / 134 ecoregions
- **P**_t New temporal covariance

1 daily

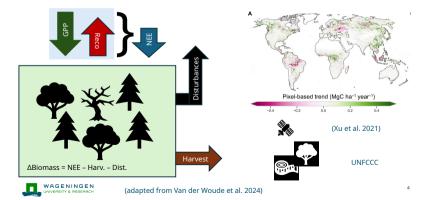
 $oldsymbol{P} = oldsymbol{P}_{
m s} \otimes oldsymbol{P}_{
m t}$

 $N pprox 5 imes 10^6$ (Back of the envelope ddof $5 imes 10^5$ 150 ensemble members

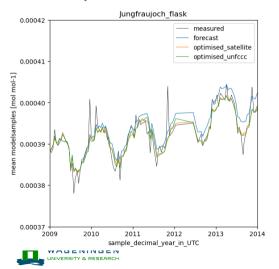



Cyclic covariance with trend

Is 150 members enough?

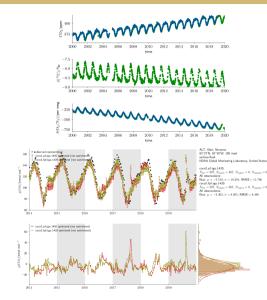


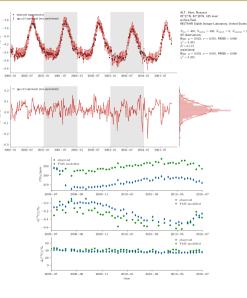
LW constraint: Δ-biomass (Auke van der Woude & Marnix van de Sande)



Use long-term constraint: Δ -biomass

A simplified view of forest carbon fluxes

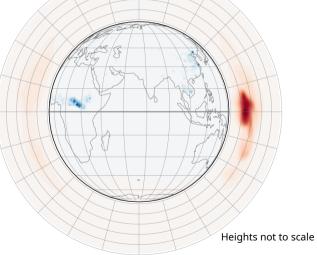

Proof of concept: Reasonable assimilated mole fractions after optimisation with biomass datasets



Satellite Xu et al. (Auke)

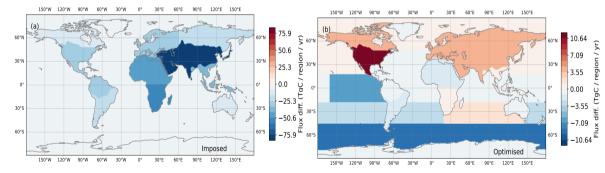
UNFCCC (Marnix)

A single framework for CO₂, CO, O₂, δ (¹³C), Δ (¹⁴C)



SW: effect of CO on CO_2 inversions (Remco de Kok)

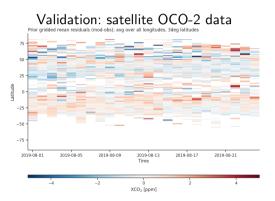
Inversion with CO₂ production from CO


- Data from Bo Zheng (Tsinghua Univ.)
- 2000-2021
- Biomass burning (BB) and fossil fuel (FF) (each ~0.2 PgC/yr)
- Compare "3D" run with normal "REF" GCP run

Inversion result (3D – REF): annual mean

Difference FF + BB (imposed)

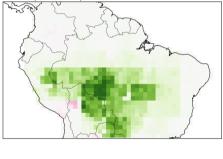
Difference BIO + OCE (optimised)


LW-SW: Carbon exchange over the Amazon during the wildfire season of 2019 (Anne-Wil van den Berg)

Long-Window Short-Window CO

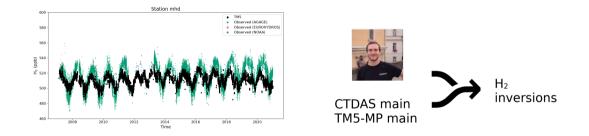
Long Window

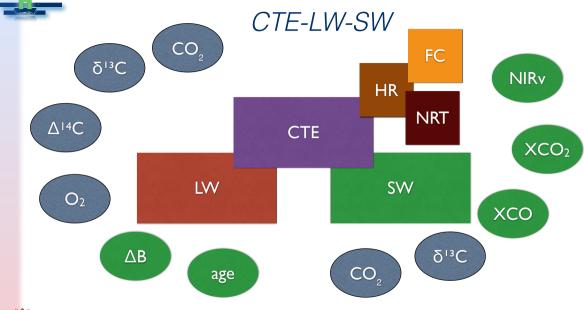
- Close large scale CO CO₂ and budget
- 2 Background observation network
- 3 Reduce mean bias


Short-Window


- 1 Focus on Amazon wildfire 2019
- 2 Small 3 day windows cycles
- **3** Optimization with MOPIT XCO data

MOPIT-XCO posterior improvement


Mean difference in absolute residuals (pos-pri) between 20190825 and 20190930 >0="not improved", <0="improved



Towards hydrogen inversions: Git merge Firmin Stroo

Full chemistry in EnKF?

Ongoing

Faster advection on reduced grid

1 domain transform:

- 1 xy2yz
- 2 recude-advectx-expand single routine
- 3 yz2xy
- $\mathbf{2}$ x advection now takes as long as y advection

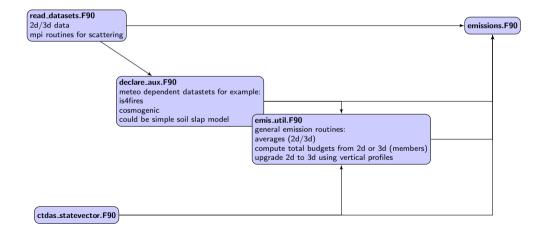
3 par.nx=4

	domain transform	base code
mpi comm	191.60 s	242.01 s
other	50.26 s	189.76 s

Issue when doing 3d interpolation

- update_halo routines do not update the corners of the halo
- 2 Biases in output when output is in the corner-box of the domain
- 3 Hurts especially with lots of satellite data
- **4** Quick fix: before output:
 - 1 update_halo
 - 2 update_halo_jband ! updates also the corner

TM5-MP devs that made this possible


1 read_data.F90 that mimics the meteo "set" routine

- 1 Only emissions / tracers in use will be read
- 2 Single read-scatter routines for 2d 3d fields

TM5-MP devs that made it possible

TM5-MP devs that made this possible

no more source files: parse source code

- 1 rc file pre-modified before expanding variables in rc file
- 2 chem param written on the fly
- 3 ... except for init files (planned)

self.dacycle = dacycle
self.load_rc(self.filename) # load the specified rc-file
self.validate_rc()
self.write_chem_param() # write the chem_param.F90 source file

my open source python projects

vremap https: //github.com/JJDHooghiem/vremap mass conserved vertical remapping of TM5 restart files

- 1 creating init
- **2** working with other models
- **3** developed for Open-IFS-CC

pyenkf https:

//github.com/JJDHooghiem/pyenkf

- python api to enkf routine written in fortran
- 2 mabye cuBLAS in the future?