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Abstract

Analyzing human motion, including tracking and pose
estimation, is a major topic in computer vision. Many meth-
ods have been developped in the past and will be devel-
opped in the future. To have a systematic and quantitative
evaluation of such methods, ground truth data of the 3D hu-
man motion is scientifically required. Some publicly avail-
able data sets exist, like HumanEva, that provide synchro-
nized video sequences with detailed ground truth 3D data
for scenes limited to only a single person. However, for
multiple persons, such a data set currently does not exist.
In this paper, we present the Utrecht Multi-Person Motion
(UMPM) benchmark, which includes synchronized motion
capture data and video sequences from multiple viewpoints
for multi-person motion including multi-person interaction.
The data set is available to the research community to pro-
mote research in multi-person articulated human motion
analysis. This paper describes the design of the benchmark,
the technical problem solutions, and the resulting data sets.

1. Introduction

The development of articulated human motion analy-
sis shows a wide spread of approaches. There are many
possible models to describe the human body and its mo-
tion. Available solutions can be classified according to 2D
or 3D human models [7], model-based or model-free [16],
view-invariant or view-dependent [9], etc. Although most
methods are restricted to one person only, recent advances
also include the extension to multiple persons, including the
challenges of occlusions by other people and objects. Ex-
amples can be found in multi-person tracking [14], and es-
timating poses from still images [6] and videos [11, 13].

The large amount of available methods makes systematic
quantitative evaluation a requisite to determine how well a
method performs compared to the state-of-the-art. For this
purpose, data sets have been made publicly available, pro-

viding video sequences with ground truth 3D information.
The most used example is the HumanEva data set [17, 18],
where actions of a single person have been captured on
video together with marker-based motion capture (MoCap)
data. A similar data set for multiple persons should be pro-
vided to stimulate research for the multi-person case.

In this paper we introduce such a benchmark for multiple
persons. This data set is called the UMPM benchmark and
its general purposes are (1) to provide synchronized videos
and MoCap data of multi-person scenarios, including multi-
person interactions, and (2) to be used as a benchmark to
evaluate multi-person motion capturing techniques. The ex-
tension to a multi-person benchmark is not trivial. If one
person is present in the scene, only self-occlusions can de-
teriorate the results. With more persons in the scene, inter-
person occlusions are unavoidable. In contrast to the Hu-
manEva data set, our data set also includes static occluders
in the scene like a table and a chair. Although the data set
is primarily meant for multi-person articulated human mo-
tion capturing, the supplementary data such as background
images and the assignment of the 3D MoCap data to a spe-
cific subject, ensures that this data set can also be used for
background subtraction and tracking research in general.

The remainder of this paper is organized as follows. An
overview of publicly available data sets is presented in Sec-
tion 2. The design of our benchmark is provided in Section
3 and the data acquisition in Section 4. Section 5 discusses
the main challenges of creating the benchmark. Section 6
provides guidelines for using this data set. Finally, the main
limitations are discussed in Section 7.

2. Related work

Human motion analysis includes detection and tracking,
which is a requisite step for pose estimation. Many data
sets are available for evaluating people tracking methods,
e.g. the PETS benchmarks [4]. However, these data sets
only provide ground truth data about a central point or a
bounding box. For pose estimation, this is too restrictive.

Several benchmarks do exist for pose estimation. Such



Name Year No.
cameras

Frame
rate

Resolution
No.

subjects
No.

frames
No.

sequences Ground truth

CMU-MoBo [8] 2001 6 30 640 × 480 25 200,000 100 -
IXMAS [21] 2006 5 23 390 × 291 11 - 39 reconstructed volumes

HumanEva [18] 2007 71 60 640 × 480 4 80,000 56
Vicon MoCap data
12 cams, 195 mpp3

CMU-MMAC [2] 2009 6 30-60 640 × 480 /
1024 × 768

43 - -
Vicon MoCap data
16 cams, 40 mpp

MuHAVi-MAS [3] 2009 8 25 720 × 576 14 - 119 Manual annotations
TUM Kitchen [19] 2009 4 25 384 × 288 4 - 20 Markerless MoCap data
MPI08 [15] 2010 8 40 1004 × 1004 - 24,000 54 3D laser scans

UMPM benchmark 2011 42 50 644 × 484 30 400,000 36
Vicon MoCap data
14 cams, 37 mpp

1 The first HumanEva dataset is recorded with 4 color and 3 greyscale cameras. The second HumanEva dataset only uses the four color cameras.
2 The 4 color cameras do not face each other directly to avoid similar sillouettes. 3 cams: cameras and mpp: markers per person.

Table 1. Properties of multicamera benchmarks for pose estimation and gesture recognition.

benchmarks should have (1) sufficiently high resolution im-
ages to capture details, (2) a high frame rate to detect move-
ments, and (3) multiple cameras to see a subject from vary-
ing view points. Table 1 provides an overview of the multi-
camera benchmarks. All data sets assume a controlled en-
vironment to facilitate detection and tracking: the light-
ing conditions remain static and the only object changing
the scenery is the person appearing in the scene. In that
case, simple background subtraction methods [23] can be
applied to detect the person. Since these benchmarks con-
tain rough gestures like waving, jumping, etc., the require-
ments on synchronisation between video recordings and the
3D ground truth information are not that urgent. The syn-
chronization in the HumanEva data set [17, 18] was done
by software in the first part and by hardware in the sec-
ond, while the MuHAVi-MAS data set [3] has no explicit
synchronization at all. However, if the movements become
faster like in a fight, or subtle like in sign language, the syn-
chronization should be done better.

An important difference in the data sets is the way they
provide ground truth 3D information. Since positions of
body parts should be measured, a logical choice is to use
a MoCap system to provide the ground truth. The Hu-
manEva data set and CMU Multi-Modal Activity Database
(CMU-MMAC) [2] obtain MoCap data captured by a Vicon
system1. This is an industry standard for optical marker-
based motion capturing. The system uses infrared cameras
to recover the 3D positions of reflective markers attached
to the subject. HumanEva used twelve 1.3 megapixel cam-
eras and CMU-MMAC used twelve 4 megapixel cameras.
The placements of the markers (typically 20-60) are posi-
tioned to measure the 3D position of the entire human body.
Some benchmarks provide alternative ground truth 3D in-
formation. For example, the Multimodal Motion Capture

1http://www.vicon.com/

Indoor Dataset (MPI08) [15] uses 3D laser scans of the hu-
man body. The TUM Kitchen Data Set [19] provides Mo-
Cap data extracted from videos using their own markerless
full-body MeMoMan tracker [5].

The main drawback of the state-of-the-art benchmarks
for pose and gesture recognition including MoCap data is
that they are restricted to one person only. There are data
sets for multiple persons with MoCap data such as the CMU
Graphics Lab Motion Capture Database [1], the data set
used by Liu [12] and the Stereo Pedestrian Detection Eval-
uation Dataset [10]. However, the first one provides only
MoCap data and no video, the second one provides MoCap
data for one person only in a two person interaction scenario
and the last one is aimed at pedestrians only.

Our UMPM benchmark uses a triangular setup of four
color video cameras with a resolution of 644 × 484 pixels
at 50 fps that are synchronized with a Vicon system consist-
ing of 14 four megapixel cameras at 100 fps, to optimally
capture information of a multi-person environment.

3. Benchmark design

To simultaneously capture video and 3D MoCap data,
while keeping the ”natural” appearance of the subjects, the
subjects are equipped with reflective markers attached to
the clothes using transparent ribbon. This implies that the
markers are not as tight as when MoCap suits are used. The
subjects are represented as natural as possible with respect
to motion and visual appearance. Therefore, no restrictions
have been made on clothing, haircut, make-up, etc., as long
as the markers are detectable (e.g. subjects do not wear
any shiny objects like glasses). Since there is no unlim-
ited access in variety of persons, we depend on the avail-
ability of persons with a specific race, length, body size,
etc. The participants are master students, PhD students and
staff members of the Multimedia & Geometry group of the



Figure 1. Example poses used in the synthetic motions.

Informatics and Computer Science Department of Univer-
siteit Utrecht. Participation in the collection process was
voluntary and each subject was required to read, understand
and sign a consent form for collection and distributation of
data. A copy of the consent form is available by writing
the authors. Subjects were informed that the data, includ-
ing video images, would be made available to the research
community and could appear in scientific publications.

The recordings should capture as much variation in poses
and gestures as possible and include challenging environ-
ment settings to ensure that this data set is representative
for the real world. The recordings should also show the
main challenges of multi-person motion, which are visibil-
ity (a (part of a) person is not visible because of occlusions
by other persons or static objects, or by self-occlusions)
and ambiguity (body parts are identified ambiguously when
persons are close to each other). The body poses and ges-
tures are classified as natural (commonly used in daily life)
and synthetic (special human movements for some particu-
lar purpose such as human-computer interaction, sports or
gaming). Each of these two classes is subdivided into a
few scenarios. In total, our data set consists of 9 differ-
ent scenarios. Each scenario is recorded with 1, 2, 3 and 4
persons in the scene and is recorded multiple times to pro-
vide variations, i.e. different subject combination, order of
poses and motion patterns. For natural motion we defined
5 different scenarios where the subjects (1) walk, jog and
run in an arbitrary way among each other, (2) walk along a
circle or triangle of a predetermined size, (3) walk around
while one of them sits or hangs on a chair, (4) sit, lie, hang
or stand on a table or walk around it, and (5) grab objects
from a table. These scenarios include individual actions, but
the number of subjects moving around in the restricted area
cause inter-person occlusions. We also include two scenar-
ios with interaction between the subjects: (6) a conversation
with natural gestures, and (7) the subjects throw or pass
a ball to each other while walking around. The scenarios
with synthetic motions include poses as shown in Figure 1,
performed when the subjects (8) stand still and (9) move
around. These scenarios are recorded without any static oc-
cluders to focus only on inter-person occlusions.

Before starting any actual action, all subjects perform
a T-pose at their starting position. In this pose all mark-
ers and body parts are maximally visible, which ensures a
proper way to initialize the motion capturing. To check the

Figure 2. Top-view of the camera placement of the four monocular
color cameras (left) and the camera views (right).

synchronization of the video cameras, one person claps his
hands before the scenario starts. At the end of each sce-
nario, each subject returns to its starting position, one per-
son claps again to obtain a second check of the synchroniza-
tion, and each subject adopts the T-pose again.

4. Acquisition data
To capture the video sequences, the room is equipped

with 4 Basler PiA A640-210-gc color cameras with a reso-
lution of 644 × 484 and a frame rate of maximal 210 fps2.
The cameras are placed such that 3 cameras form an equi-
lateral triangle together with the fourth camera as shown in
Figure 2. This choice ensures that (1) the cameras surround
the acquisition area and the subjects, (2) there is sufficient
overlap between the cameras’ field of views, and (3) the
cameras do not face each other directly to avoid similar sil-
houettes. The cameras have a wide angle lens (3.5 mm) to
capture wider views such that subjects can perform closer
to the camera and the size requirement of the scene is re-
duced. Although a wide angle lens shows more radial dis-
tortion than a normal lens, this can be corrected. Example
images from the videos are shown in Figure 3.

The ground truth 3D data is captured with a Vicon Mo-
Cap system, which consists of 8 Vicon MX-40+ cameras
(4 megapixel resolution, maximum speed of 160 fps, in-
frared), and 6 Vicon MX-F40 cameras (4 megapixel resolu-
tion, maximum speed of 370 fps, near-infrared). The actual
recording speed is set to 100 fps, which is four times the
frame rate of the color cameras. Both the color and Vicon
cameras have been mutually synchronized by a hardware
module of the Vicon system (Ultranet HD). The Vicon sys-
tem identifies the 3D position of the reflective markers at-
tached to the subjects. In our UMPM benchmark the mark-
ers are positioned as illustrated in Figure 4. For each person
we used 37 markers: 3 around the head; 2 around the neck;
4 around the waist; 1 on the shoulder; 3 around each elbow;
3 around each wrist; 1 on the outside of the hip; 3 around

2http://www.baslerweb.com/



Figure 3. Example data from the UMPM benchmark where each column is a screen shot of a scenario taken by all four color cameras.

each knee; and 3 around each ankle. The positioning of
the markers is customized to handle inter-person occlusions.
Each joint of the human body (wrist, ankle, neck, etc.), ex-
cept the shoulder and tigh, is measured by more than one
marker. For example, the wrist has three markers to indi-
cate the center. If a marker is occluded, other markers for
this joint might still be detected.

Each scene setup and camera placement need proper cal-
ibration to relate the camera views to the 3D world, includ-
ing accurate estimation of the cameras intrinsic/extrinsic pa-
rameters and precise alignment of the global origin. The
Vicon cameras are calibrated by the Vicon calibration wand
(a tool with 5 markers) and the calibration function embed-

(a) (b) (c)

Figure 4. Placement of the reflective markers: frontal view (a),
back view (b) and detailed views of the wrist, the knees and ankles,
and the head and nek (c).

ded in the Vicon Nexus software 3. To calibrate the video
cameras, the conventional checkerboard-based calibration
method [24] is used. To align the global origin of both cam-
era systems, the wand is placed on top of the checker-board
such that the zero-coordinates of both tools are located at
the same spot, and the coordinate axes overlay each other.

The Nexus software combines the data from the Vicon
cameras to obtain 3D marker positions. After manually
assigning labels to the markers in one frame, the Nexus
software reconstructs the trajectories and assigns labels to
marker positions in the other frames. This reconstruction
is not always correct and relabeling is necessary. This im-
plies that (1) missing markers should be identified, (2) er-
roneous measurements should be removed, and (3) each
marker should get a label of the body part and the person
it belongs to. Manually checking the marker positions -
typically half a million per recording- is a non-trivial task.
We developed an approach to subsequently (1) check the
continuity of trajectories, meaning that a sudden change in
the speed of a label points to a place that needs special at-
tention (this reduces the number of positions to inspect to
about 100), (2) assign labels to marker positions that were
not yet assigned a label (anonymous markers), where we it-
eratively check for discontinuities, relabel manually and la-
bel anonymous markers until no serious discontinuities are
left, and finally, (3) interpolate trajectories and throw away
anonymous markers. This procedure is repeated until no
significant improvements are found. The 3D marker posi-
tions, labels and the way these labels are found, are made
available in the appropriate fields in a C3D file structure4.

Next to the 37 marker positions per subject, we also pro-

3http://www.cacs.louisiana.edu/labs/ecrg/vicon/
4http://www.c3d.org/index.html



(a) (b) (c) (d) (e)

Figure 5. Estimating the subjects’ joints ground truth. (a) Example frame superimposed with virtual markers (green circles). (b) Estimating
the virtual markers (green circles) by the 3D coordinates of the reflective markers (gray squares). (c) The kinematically constrained human
skeleton model. (d) Virtual markers (colored squares) drive the skeletons (black bones and gray joints). (e) The virtual markers (colored
circles) and the skeletons (gray lines and circles) superimposed on one example view.

vide two sets with 15 virtual 3D positions to describe the
bone joints, namely head, neck, shoulders, elbows, wrists,
pelvis, tighs, knees and ankles (Figure 5(a)). In the first
set, the joint positions (except for the shoulders and tighs)
are computed by averaging the coordinates of the corre-
sponding markers, since these are placed around the joints.
The corresponding mean is therefore ”inside” the body part,
which properly represents the bone joints. The shoulders
and pelvis joints are estimated by the positions of the neck,
waist and corresponding limbs. The left pelvis joint is ap-
proximated as a point on the line between the center of the
waist and the marker on the left upper leg, and depends
on the subjects pelvis width (Figure 5(b)). Similarly, the
center of the neck and the marker on the upper arm define
the shoulder coordinates. Finally, the means of the pelvis
joints and shoulder joints define the pelvis and chest cen-
ters, respectively. The second set adds a kinematically con-
strained human skeleton model (23 degrees of freedom) to
the 15 virtual joints of the first set to overcome the problem
of moving markers caused by the deformation of muscles
or moving clothes. It uses the Cyclic-Coordinate Descent
(CCD)-based inverse kinematics approaches [22] (Figure
5(c)). The 3D coordinates of the virtual joints drive the
skeleton (Figure 5(d)). The bone lengths of the skeleton
are scaled according to the corresponding positions of the
virtual joints in the first frame. The skeleton imposes strict
poses and joint position constraints, which makes the esti-
mation of the joint ground truth more robust against moving
markers and measurement errors (Figure 5(e)).

5. Challenges

The main challenge in creating the UMPM benchmark is
to handle intra-/inter-person and other occlusions. A conse-
quence of such occlusions is that some markers cannot be
detected. However, to provide complete ground truth 3D in-
formation of the subjects, we must identify and locate these
missing markers. To reduce the possibility of missing mark-

ers, we adopted a different setting of the markers (see Fig-
ure 4). Although the probability increases to find a marker
for each joint, these marker positions have to be translated
to the actual joint position, which is defined as the average
of the marker positions of this joint. Hence, if a marker
is missed, this average position still has to be estimated.
Another consequence concerns the labelling and tracking
of each marker. The closer markers are to each other, the
higher the probability that a marker is labelled wrongly. The
problem deteriorates if some markers are missed.

The shoulder joint must be approximated from the up-
per arm and neck markers. However, simply averaging the
marker positions is not adequate, since a moving upper arm
does not imply a moving shoulder joint. Thus, a more ad-
vanced model is needed. Similarly, the pelvis joint is ap-
proximated using the upper leg and waist markers.

6. Usage of data set

This benchmark is meant to evaluate human motion cap-
turing for multiple subjects in a similar way as HumanEva
does for a single subject. In [17] an evaluation measure has
been introduced to compare algorithms with the provided
ground truth. The benchmark provides four synchronized
color videos as input of the articulated human motion cap-
ture method. The ground truth 3D information is available
in 3 formats: (1) 37 marker positions per subject, (2) 15
joint positions obtained directly by averaging the marker
positions, and (3) 15 corrected joint postions by enforcing
kinematic constraints. The user may choose which one is
used, but any pose recovery/tracking method has to trans-
late its results to either one of these formats.

To facilitate the use of this data set, we provide some
additional material. First, to match the video sequences to
the ground truth, the calibration parameters for each cam-
era are given, namely (1) internal and (2) external cam-
era parameters, and (3) distortion parameters. Second, we
provide backround images for methods that rely on back-



Figure 6. Per view ccclusion detection. The white and colored
trapezoid represent occluded and non-occluded parts, respectively.

ground subtraction. Third, extensive documentation con-
cerning this benchmark is available in a technical report
[20]. The video recordings, C3D files, calibration param-
eters, background images, documentation and software of
the UMPM benchmark can be downloaded from the follow-
ing URL: http://www.projects.science.uu.nl/umpm/.

The benchmark can also be used to focus on specific
parts of an algorithm. An example is the visibility measure
for each body part and camera, which was first presented
in [13] for tracking purposes. The kinematic skeletons are
used to model the motion and poses, where the visibility
is computed for each body part for a selected camera view.
The result is shown in Figure 6. The best visibility view is
expected to provide robust cues for locating a body part.

7. Discussion

Although this data set is created with great care, it has its
limitations. The quality of the video images is determined
by the hardware used. The wide angle lenses widened the
captured scene, but also increased radial distortion.

The marker positions were chosen to detect inter-person
occlusions. Although the current setting of the markers is
an improvement of the single person setting, capturing the
shoulder and pelvis joint positions might be improved fur-
ther. Therefore, for each measured marker position, we in-
dicate in the C3D file if it is measured and labeled by Nexus
software, or corrected by our software. In this way, the users
may decide which marker positions they want to use.
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