References - Paradise by the bioluminescent light
(1) Genetic Barcelona Project (2007).The Genetic Creation of Bioluminescent Plants for Urban and Domestic Use. Downloaded February 25, 2015, from: http://www.albertoestevez.es/writing/escritos_geneticos/escritos_geneticos08.pdf
(2) Haddock, S. H. D., Moline, M. A., & Case, J. F. (2010). Bioluminescence in the sea. Annual Review of Marine Science, 2(1), 443-493.
(3) Hastings, J. W. (1983). Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. Journal of Molecular Evolution, 19(5), 309-321.
(4) Widder, E. A. (2010). Bioluminescence in the ocean: Origins of biological, chemical, and ecological diversity. Science, 328(5979), 704-708.
(5) Reeve, B., Sanderson, T., Ellis, T., & Freemont, P. (2014) How Synthetic Biology Will Reconsider Natural Bioluminescence and Its Applications. Adv Biochem Eng Biotechnol.;145:3-30.
(6) Rees, J. -., De Wergifosse, B., Noiset, O., Dubuisson, M., Janssens, B., & Thompson, E. M. (1998). The origins of marine bioluminescence: Turning oxygen defence mechanisms into deep-sea communication tools. Journal of Experimental Biology, 201(8), 1211-1221.
(7) Dubuisson, M., Marchand, C., & Rees, J. -. (2004). Firefly luciferin as antioxidant and light emitter: The evolution of insect bioluminescence. Luminescence, 19(6), 339-344.
(8) Deheyn, D. D., & Latz, M. I. (2007). Bioluminescence characteristics of a tropical terrestrial fungus (basidiomycetes). Luminescence, 22(5), 462-467.
(9) Philips (2011). Bio-light. Retrieved February 25, 2015, from http://www.design.philips.com/philips/sites/philipsdesign/about/design/designportfolio/design_futures/bio_light.page.
(10) Yonder biology (2013). DINO PET // a living, interactive, bioluminescent pet. Retrieved february 25, 2015, from http://www.kickstarter.com/projects/yonder/dino-pet-a-living-bioluminescent-night-light-pet.
(11) Bioglyphs (n.d.) About bioglyphs 2. Retrieved February 25, 2015, from http://www.biofilm.montana.edu/Bioglyphs/Bioglyphs_02/AboutBioglyphs2.htm.
(12) Girotti, S., Ferri, E. N., Fumo, M. G., & Maiolini, E. (2008). Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 608(1), 2-29.
(13) iGem team Cambridge (2010). Future applications: Lighting. retrieved February 25, 2015, from http://2010.igem.org/Team:Cambridge/Tools/Lighting.
(14) Bioglow (n.d.). Bioglow's Starlight Avatar Variety - the world's first autoluminescent glowing plant. Retrieved February 25, 2015 from:http://bioglowtech.com/glowingplant.html.
(15) Longcore T, Rich C (2004) Ecological light pollution. Front Ecol Environ 2(4):191-198.
References - Lichens, inconspicuous masterpieces
(1) Yuan X, Xiao S, Taylor TN. Lichen-like symbiosis 600 million years ago. Science 2005;308(5724):1017-1020.
(2) Campbell NA, Reece JB. Biology. 6th ed. San Francisco: Benjamin Cummings; 2002.
(3) Honegger R. The lichen symbiosis - What is so spectacular about it? Lichenologist 1998;30(3):193-212.
(4) Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 1998;4(3):153-163.
(5) Lutzoni F, Pagel M, Reeb V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 2001;411(6840):937-940.
(6) Honegger R. Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 1991;42(1):553-578.
(7) Lawrey JD, Diederich P. New frontiers in bryology and lichenology - Lichenicolous fungi: Interactions, evolution, and biodiversity. Bryologist 2003;106(1):80-120.
(8) Silverman AJ. Images of British Lichenicolous Fungi. 2013; Available at: http://www.lichens.lastdragon.org/lichenicolous/Marchandiomyces_corallinus.html.
(9) Shrestha G, St. Clair L. Lichens: a promising source of antibiotic and anticancer drugs. Phytochemistry Reviews 2013 03/01;12(1):229-244.
(10) Kranner I, Beckett R, Hochman A, Nash III TH. Desiccation-tolerance in lichens: A review. Bryologist 2008;111(4):576-593.
(11) Martinez I, Flores T, Otalora MAG, Belinchon R, Prieto M, Aragon G, et al. Multiple-scale environmental modulation of lichen reproduction. Fungal Biology 2012;116(11):1192-1201.
(12) Tunjic M, Korac P. Vertical and horizontal gene transfer in lichens. Period Biol 2013;115(3):321-329.
(13) Lisci M, Monte M, Pacini E. Lichens and higher plants on stone: A review. International Biodeterioration and Biodegradation 2003;51(1):1-17.
(14) Adamo P, Violante P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 2000;16(5-6):229-256.
(15) Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB. Molecular evidence for the early colonization of land by fungi and plants. Science 2001;293(5532):1129-1133.
(16) Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, et al. A phylogenetic estimation of trophic transition networks for ascomycetous Fungi: Are lichens cradles of symbiotrophic Fungal diversification? Syst Biol 2009;58(3):283-297.
(17) Selosse M-, Le Tacon F. The land flora: A phototroph-fungus partnership? Trends in Ecology and Evolution 1998;13(1):15-25.
(18) Kupchan SM, Kopperman HL. l-Usnic acid: tumor inhibitor isolated from lichens. Experientia 1975;31(6):625.
(19) Ingolfsdottir K. Usnic acid. Phytochemistry 2002 12;61(7):729-736.
(20) Backorova M, Backor M, Mikes J, Jendzelovsky R, Fedorocko P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol In Vitro 2011 Feb;25(1):37-44.
(21) Psoroma. 2014; Available at: http://en.wikipedia.org/wiki/Psoroma.
(22) National Cancer Institute. A Snapshot of Prostate Cancer. 2014; Available at: http://www.cancer.gov/researchandfunding/snapshots/prostate. Accessed February/21, 2015.
(23) Russo A, Piovano M, Lombardo L, Vanella L, Cardile V, Garbarino J. Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anticancer Drugs 2006;17(10):1163-1169.
(24) Tokiwano T, Satoh H, Obara T, Hirota H, Yoshizawa Y, Yamamato Y. A Lichen Substance as an Antiproliferative Compound against HL-60 Human Leukemia Cells: 16-O-Acetyl-leucotylic Acid Isolated from Myelochroa aurulenta. Biosci Biotechnol Biochem 2009 11/23; 2015/02;73(11):2525-2527.
(25) Backor M, Fahselt D. Cellulose-acetate disks as novel substrate for the resynthesis and culture of lichens. Bryologist 2003;106(3):439-442.
(26) Fazio AT, Bertoni MD, Adler MT, Ruiz LB, Rosso ML, Muggia L, et al. Culture studies on the mycobiont isolated from Parmotrema reticulatum (Taylor) Choisy: Metabolite production under different conditions. Mycological Progress 2009;8(4):359-365.
(27) Stocker-Worgotter E. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimatemetabolite production, and PKS genes. Nat Prod Rep 2008;25(1):188-200.
(28) Gagunashvili AN, Davidsson SP, Jonsson ZO, Andresson OS. Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea. Mycol Res 2009;113(3):354-363.
(29) Ahmadjian V. Artificial reestablishment of the lichen Cladonia cristatella. Science 1966;151(3707):199-201.
(30) Joneson S, Armaleo D, Lutzoni F. Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia 2011;103(2):291-306.
References - Biomimicry, the rise of the biomimetic building
(1) Davies N. (2014) Mother Nature, designer, Planning, volume 80 (3), 12-17
(2) Pawlyn M. (2011) Biomimicry in Architecture, Riba Publishing, London
(3) Myers W. (2014) Biodesign, Museum of Modern Art, New York
(4) Pedersen Zari M. et al (2007) Biomimetic approaches to architectural design for increased
sustainability, Auckland, New Zealand
(5) MEZINI, L. (2012). Bioarchitecture-Inspirations From Nature. Gazi University Journal of Science,
25(1), 263-268.
(6) Rawlings, A. E., Bramble, J. P., & Staniland, S. S. (2012). Innovation through imitation:
biomimetic, bioinspired and biokleptic research. Soft Matter, 8(25), 6675-6679.
(7) Eifer (2015), Energy, cities and territories. Retrieved from www.eifer.kit.edu/-energy-cities-and-
territories- on 12-3-2015
(8) Smith T.M. & Smith R.L. (2014) Elements of ecology, Pearson Education Limited, 8th edition
(9) Pedersen Zari M. (2010) Biomimetic design for climate change adaptation and mitigation,
Architectural Science Review, 53:2, 172-183
(10) Exploration architecture (2015). The Mobius Project. Retrieved from http://www.exploration-
architecture.com/projects/the-mobius-project on 8-4-2015
(11) Pedersen Zari, M. and J. B. Storey (2007). An ecosystem based biomimetic theory for a
regenerative built environment Lisbon Sustainable Building Conference 07, Lisbon, Portugal.
(12) Inward, D., Beccaloni, G., Eggleton, P., (2007), Death of an order: a comprehensive molecular
phylogenetic study confirms that termites are eusocial cockroaches, Biol. Lett.: 2007, 3, 331-335;
DOI: 10.1098/rsbl.2007.0102
(13) Korb, J., (2003), Thermoregulation and ventilation of termite mounds, Naturwissenschaften
(2003) 90:212–219
(14) Turner, J.S., Soar, R.C., (2008), Beyond biomimicry: What termites can tell us about realizing the
living building, The 1st International Conference On Industrialised, Integrated, Intelligent
Construction. 14-16 May 2008
(15) Norgaard and Dacke: Fog-basking behaviour and water collection efficiency in Namib Desert
Darkling beetles. Frontiers in Zoology 2010 7:23.
(16) Parker, R.W., Lawrence, C.R., (2001), Water capture by a desert beetle, Nature 414, 33-34
(17) Harman J., (2014) The Shark’s paintbrush, White Cloud Press
(18) Knoben, W. (2011). Bacteria care for concrete. Materials Today, 14(9), 444.
(19) Jonkers, H. M., & Schlangen, E. (2008). Development of a bacteria-based self healing concrete. In
Proc. int. FIB symposium (Vol. 1, pp. 425-430).
(20) Baumeister, D., Tocke, R., Dwyer, J., Ritter, S., & Benyus, J. (2015). Biomimicry resource
handbook: a seed bank of best practices.
References - Bioremediation against nuclear radiation
(1) World Nuclear Association (n.d.). Safety of Plants. Retrieved June 29, 2015, from: http://www.world-nuclear.org/info/Safety-and-Security/Safety-of-Plants/.
(2) Ojovan, M. I., & Lee, W. E. (2013). An introduction to nuclear waste immobilisation. Waltham, MA: Elsevier
(3) Lee, K. Y., Kim, K. W., Baek, Y. J., Chung, D. Y., Lee, E. H., Lee, S. Y., & Moon, J. K. (2014). Biosorption of uranium (VI) from aqueous solution by biomass of brown algae Laminaria japonica. Water Science & Technology, 70 (1), 136-143.
(4) Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92 (3), 407-418.
(5) World Nuclear Association (2014, March). What is Uranium? How does it work? Retrieved June 29, 2015, from: http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Introduction/What-is-Uranium--How-Does-it-Work-/.
(6) Prakash, D., Gabani, P., Chandel, A. K., Ronen, Z., & Singh, O. V. (2013). Bioremediation: a genuine technology to remediate radionuclides from the environment. Microbial biotechnology, 6(4), 349-360.
(7) Poschl, M., & Nollet, L. M. (2010). Radionuclide concentrations in food and the environment. Boca Raton, FL: CRC Press.
(8) World health organisation (2012, November). Ionizing radiation, health effects and protective measures. Retrieved June 29, 2015, from: http://www.who.int/mediacentre/factsheets/fs371/en/.
(9) United Nations. Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation: sources (Vol. 1). New York, NY: United Nations Publications.
(10) O'Brien, R. D., & Wolfe, L. S. (2013). Radiation, Radioactivity, and Insects: Prepared Under the Direction of the American Institute of Biological Sciences for the Division of Technical Information, United States Atomic Energy Commission. Burlington: Elsevier Science.
(11) Misra, C. S., Mukhopadhyaya, R., & Apte, S. K. (2014). Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. Journal of biotechnology, 189, 88-93.
(12) Slade, Dea, and Miroslav Radman. "Oxidative stress resistance in Deinococcus radiodurans." Microbiology and Molecular Biology Reviews 75.1 (2011): 133-191.
(13) Krisko, A., & Radman, M. (2013). Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harbor perspectives in biology,5(7), a012765.
(14) Normile, D. (2013). Cooling a hot zone. Science, 339(6123), 1028-1029.
(15) Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011). Review on Bioremediation of Polluted Environment:: A Management Tool. International journal of environmental sciences, 1(6), 1079.
(16) Lawrence, E. (2011). Henderson’s dictionary of biology. Essex, Harlow: Pearson Education Limited.
(17) Appukuttan, D., Rao, A. S., & Apte, S. K. (2006). Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste.Applied and environmental microbiology, 72(12), 7873-7878.
(18) Misra, C. S., Appukuttan, D., Kantamreddi, V. S. S., Rao, A. S., & Apte, S. K. (2012). Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioengineered, 3(1), 44-48.
(19) Roongtanakiat, N., Sudsawad, P., & Ngernvijit, N. (2010). Uranium absorption ability of sunflower, vetiver and purple guinea grass. Kasetsart Journal - Natural Science, 44 (2), 182-190.
(20) Zalewska, M., Nogalska, A. (2014). Phytoextraction potential of sunflower and white mustard plants in zinc-contaminated soil. Chilean Journal of Agricultural Research, 74 (4), 485-489.
(21) Erakhrumen, A., & Agbontalor, A. (2007). Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Review, 2(7), 151-156.
(22) Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18.
(23) Rascio, N., Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180 (2), 169-181.
(24) Prasad, M. N. V. (2007). Sunflower (Helinathus annuus L.) - A potential crop for environmental industry. Helia, 30 (46), 167-174.
(25) The Watchers (2011, August 18). Sunflower radiation absorption project grows around Fukushima. Retrieved June 29, 2015, from: http://thewatchers.adorraeli.com/2011/08/18/sunflower-radiation-absorption-project-grows-around-japan/.
(26) Vieira, R. H. S. F., & Volesky, B. (2000). Biosorption: a solution to pollution? International Microbiology, 3 (1), 17-24.
References - Dog Denizens: a poop primer
(1) Suchodolski JS. Intestinal Microbiota of Dogs and Cats: a Bigger World than We Thought. Vet Clin N Am : Small Anim Pract 2011 3;41(2):261-272.
(2) Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS.
Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats.
FEMS Microbiol Ecol 2011;76(2):301-310.
(3) Middelbos IS, Boler BMV, Qu A, White BA, Swanson KS, Fahey Jr. GC.
Phylogenetic Characterization of Fecal Microbial Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing.
PLoS ONE 2010;5(3).
(4) Simpson JM, Martineau B, Jones WE, Ballam JM, Mackie RI.
Characterization of fecal bacterial populations in canines: Effects of age, breed and dietary fiber.
Microb Ecol 2002;44(2):186-197.
(5) Suchodolski JS.
Companion animals symposium: Microbes and gastrointestinal health of dogs and cats.
J Anim Sci 2011;89(5):1520-1530.
(6) Campbell NA, Reece JB. Biology.
6th ed. San Francisco: Benjamin Cummings; 2002.
(7) Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, et al.
Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice.
ISME Journal 2011;5(4):639-649.
(8) Claerebout E, Casaert S, Dalemans A-, De Wilde N, Levecke B, Vercruysse J, et al.
Giardia and other intestinal parasites in different dog populations in Northern Belgium.
Vet Parasitol 2009;161(1-2):41-46.
(9) Liu Y, Whitman WB.
Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea.
Annals of the New York Academy of Sciences 2008;1125:171-189.
(10) Guarner F, Malagelada J-.
Gut flora in health and disease.
Lancet 2003;361(9356):512-519.
(11) Fermenting Solutions International.
Available at:
https://fermentingsolutions.files.wordpress.com/2014/02/probiotics_mechanisms_of_action.jpg.
Accessed 08/1, 2015.
(12) Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, et al.
The Fecal Microbiome in Dogs with Acute Diarrhea and Idiopathic Inflammatory Bowel Disease.
PLoS ONE 2012;7(12).
(13) Bell JA, Kopper JJ, Turnbull JA, Barbu NI, Murphy AJ, Mansfield LS.
Ecological Characterization of the Colonic Microbiota of Normal and Diarrheic Dogs.
Interdisciplinary Perspectives on Infectious Diseases 2008;2008:17.
(14) Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al.
Treating clostridium difficile infection with fecal microbiota transplantation.
Clin Gastroenterol Hepatol 2011;9(12):1044-1049.
(15) Silva ROS, Lobato FCF.
Clostridium perfringens: A review of enteric diseases in dogs, cats and wild animals.
Anaerobe 2015;33:14-17.
(16) Uzal FA, McClane BA, Cheung JK, Theoret J, Garcia JP, Moore RJ, et al.
Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.
Vet Microbiol 2015.
(17) Clostridium perfringens.
2014; Available at:
http://www.cdc.gov/foodsafety/clostridium-perfingens.html.
(18) McClane BA.
The complex interactions between Clostridium perfringens enterotoxin and epithelial tight junctions.
Toxicon 2001;39(11):1781-1791.
(19) Sarker MR, Carman RJ, McClane BA.
Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops.
Mol Microbiol 1999;33(5):946-958.
(20) Tight Junctions.
2011; Available at:
http://marifersagastume.blogspot.nl/2011/07/vocabulary-of-concepts-of-ch33-animal.html.
Accessed 08/1, 2015.
(21) Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N.
Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo.
J Biol Chem 1997;272(42):26652-26658.
(22) Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA.
CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin.
J Biol Chem 2000;275(24):18407-18417.
(23) Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, et al.
Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin.
Science 2015;347(6223):775-778.
(24) Felis GE, Dellaglio F.
Taxonomy of lactobacilli and bifidobacteria.
Curr Issues Intest Microbiol 2007;8(2):44-61.
(25) Tannock GW.
Probiotic properties of lactic-acid bacteria: Plenty of scope for fundamental R and D.
Trends Biotechnol 1997;15(7):270-274.
(26) Bernet MF, Brassart D, Neeser JR, Servin AL.
Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.
Gut 1994;35(4):483-489.
(27) Chong ESL.
A potential role of probiotics in colorectal cancer prevention: Review of possible mechanisms of action.
World Journal of Microbiology and Biotechnology 2014;30(2):351-374.
(28) Windey K, de Preter V, Verbeke K.
Relevance of protein fermentation to gut health.
Molecular Nutrition and Food Research 2012;56(1):184-196.
(29) Perelmuter K, Fraga M, Zunino P.
In vitro activity of potential probiotic Lactobacillus murinus isolated from the dog.
J Appl Microbiol 2008;104(6):1718-1725.
(30) Fernández MF, Boris S, Barbés C.
Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract.
J Appl Microbiol 2003;94(3):449-455.
(31) Gram Positive bacteria.
2015; Available at:
https://en.wikipedia.org/wiki/Gram-positive_bacteria#/media/File:Gram-Cell-wall.svg.
Accessed 08/1, 2015.
(32) Ogué-Bon E, Khoo C, McCartney AL, Gibson GR, Rastall RA.
In vitro effects of synbiotic fermentation on the canine faecal microbiota.
FEMS Microbiol Ecol 2010;73(3):587-600.
(33) Traversa D.
Pet roundworms and hookworms: A continuing need for global worming.
Parasites and Vectors 2012;5(1).
(34) Rubinsky-Elefant G, Hirata CE, Yamamoto JH, Ferreira MU.
Human toxocariasis: Diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms.
Ann Trop Med Parasitol 2010;104(1):3-23.
References - Ant behaviour to solve urban problems
(1) Wilson, E. O. (1987). Causes of ecological success: The case of the ants. Journal of Animal
Ecology, 56(1), 19.
(2) Fusco, G. and Minelli, A. (2013). Arthropod Segmentation and Tagmosis. Retrieved from http://link.springer.com/chapter/10.1007%2F978-3-642-36160-9_9
(3) Antweb (n.d.). Bolton world catalog ants. Retrieved Februay 20, 2015, from http://www.antweb.org/world.jsp.
(4) Wilson,D.E. and Reeder, D.M. (2005). Mammal Species of the World. A Taxonomic and Geographic Reference. Volume 1. Retrieved from http://books.google.com.
(5) Hölldobler, B. and Wilson, E. O. (1990). The Ants. Berlin (etc.): Springer.
(6) Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. Biodiversity and Conservation, 7, 1221-1244.
(7) Haines, B.L. (1978). Element and energy flows through colonies of the leaf-cutting ant, Atta colombica, in Panama. Biotropica, 10(4), 270-277.
(8) Youngsteadt, E. et al. (2014). Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods. Global Change Biology, 21(3), 1103-1115.
(9) Huxley, J.S. (1949). Ants. London: Dobson.
(10) Li, L., Peng, H., Kurths, J., Yang, Y. and Schellnhuber, H.J., (2014), Chaos-order transition in foraging behavior of ants. PNAS, 111(23), 8392-8397.
(11) Jackson, D.E. and Ratnieks, F.L.W., (2006), Communication in ants. Current Biology, 16(15), 570-574.
(12) Wilson, E.O. and Hölldobler, B. (1988). Dense heterarchies and mass communication as the basis of organization in ant colonies. Trends in Ecology & Evolution, 3(3), 65-68.
(13) Deneubourg, J.L., Aron, S., Goss, S. and Pasteels, J.M. (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of insect behavior, 3(2), 159-168.
(14) Garnier, S., Gautrais, J. and Theraulaz, G., (2007). The biological principles of swarm intelligence. Swarm intelligence, 1(1), 3-31.
(15) Seeley, T. (2002). When is self-organization used in biological systems? Biol. Bull. 202, 314-318.
(16) Dorigo, M., Bonabeau, E. and Theraulaz, G. (2000). Ant algorithms and stigmergy. Future Generation Computer Systems, 16, 851-871.
(17) Dorigo, M., and Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. BioSystems, 43(2), 73-81.
(18) Jabbarpour, M. R., Jalooli, A., Shaghaghi, E., Noor, R. M., Rothkrantz, L., Khokhar, R. H., and Anuar, N. B. (2014). Ant-based vehicle congestion avoidance system using vehicular networks. Engineering Applications of Artificial Intelligence, 36, 303-319.
(19) Dorigo, M. and Birattari, M. (2010). Ant Colony Optimization. Encyclopedia of Machine Learning. . Retrieved from http://link.springer.com.proxy.library.uu.nl/referenceworkentry/10.1007%2F978-0-387-30164-8_22#close.
(20) Yang, H. (2014). Study on traveling salesman problem based on the improved chaos ant colony algorithm. Advanced Material Research, 989-994, 2196-2199.
(21) Dorigo, M. and Stützle, T. (2004). Ant colony opimization. Retrieved from http://www.researchgate.net/profile/Thomas_Stuetzle/publication/36146886_Ant_colony_optimization_/links/0fcfd50be44333c223000000.pdf.
(22) Rizzoli, A.E., Montemanni, R., Lucibello, E. and Gambardella, L.M. (2007). Ant colony optimization for real-world vehicle routing problems. Swarm intelligence, 1(2), 135-151.
(23) Radharamanan, R. and Choi, L. I. (1986). A branch and bound algorithm for the travelling salesman and the transportation routing problems. Computers and Industrial Engineering, 11(1-4), 236-240.
(24) Karadimas, N. V., Papatzelou, K. and Loumos, V. G. (2007). Optimal solid waste collection routes identified by the ant colony system algorithm. Waste Management and Research, 25(2), 139-147.
References - The impact of Green Roofs on the Urban Ecosystem
(1) United Nations. Dept. of Economic. (2014). World urbanisation prospects: the 20014 revision. United Nations Publications.
(2) Czech, B., Krausman, P. R., & Devers, P. K. (2000). Economic Associations among Causes of Species Endangerment in the United States Associations among causes of species endangerment in the United States reflect the integration of economic sectors, supporting the theory and evidence that economic growth proceeds at the competitive exclusion of nonhuman species in the aggregate. BioScience, 50(7), 593-601.
(3) Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N., ... & Rowe, B. (2007). Green roofs as urban ecosystems: ecological structures, functions, and services. BioScience, 57(10), 823-833.
(4) Wania A, Kühn I, Klotz S (2006) Plant richness patterns in agricultural and urban landscapes in Central Germany-spatial gradients of species richness. Landsc Urban Plan 75:97-110
(5) McKinney, M. L. (2008). Effects of urbanisation on species richness: a review of plants and animals. Urban ecosystems, 11(2), 161-176.
(6) Blair RB (2001) Birds and butterflies along urban gradients in two ecoregions of the U.S. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Kluwer, NewYork, pp 33-56.
(7) Madre, F., Vergnes, A., Machon, N., & Clergeau, P. (2014). Green roofs as habitats for wild plant species in urban landscapes: First insights from a large-scale sampling. Landscape and Urban Planning, 122, 100-107.
(8) Platt, R. H. (2004). Regreening the Metropolis: Pathways to More Ecological Cities: Keynote Address. Annals of the New York Academy of Sciences,1023(1), 49-61.
(9) Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kazmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and urban planning, 81(3), 167-178.
(10) Schrader, S., & Böning, M. (2006). Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans.Pedobiologia, 50(4), 347-356.
(11) Wolf, D., & Lundholm, J. T. (2008). Water uptake in green roof microcosms: Effects of plant species and water availability. Ecological Engineering, 33(2), 179-186.
(12) Köhler, M., & Poll, P. H. (2010). Long-term performance of selected old Berlin greenroofs in comparison to younger extensive greenroofs in Berlin. Ecological Engineering, 36(5), 722-729.
(13) Bates, Sadles & Mackay 2013.
(14) MacIvor, J. S., & Ksiazek, K. (2015). Invertebrates on green roofs. In Green Roof Ecosystems (pp. 333-355). Springer International Publishing.
(15) Fernandez-Canero, R., & Gonzalez-Redondo, P. (2010). Green roofs as a habitat for birds: a review. Journal of Animal and Veterinary Advances, 9(15), 2041-2052.
(16) Grant, G. (2006). Extensive green roofs in London. Urban Habitats, 4(1), 51-65.
(17) Brenneisen, S. (2006). Space for urban wildlife: designing green roofs as habitats in Switzerland. Urban Habitats, 4(1), 27-36.
(18) Williams, N. S., Lundholm, J., & Scott MacIvor, J. (2014). Do green roofs help urban biodiversity conservation?. Journal of Applied Ecology, 51(6), 1643-1649.
(19) Kim, K. G. (2004). The application of the biosphere reserve concept to urban areas: the case of green rooftops for habitat network in Seoul. Annals of the New York Academy of Sciences, 1023(1), 187-214.
References - Urban Evolution
(1) Angel, S., Sheppard, S., Civco, D. L., Buckley, R., Chabaeva, A., Gitlin, L., ... & Perlin, M. (2005). The dynamics of global urban expansion (p. 205). Washington, DC: World Bank, Transport and Urban Development Department.
(2) Seto, K. C., Fragkias, M., Güneralp, B., & Reilly, M. K. (2011). A meta-analysis of global urban land expansion. PloS one, 6(8), e23777.
(3) Pickett, S. T., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2008). Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. In Urban Ecology (pp. 99-122). Springer US.
(4) Kleerekoper, L., van Esch, M., & Salcedo, T. B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30-38.
(5) Botkin, D. B., & Beveridge, C. E. (1997). Cities as environments. Urban ecosystems, 1(1), 3-19
(6) Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 333-365.
(7) Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual review of ecology, evolution, and systematics, 487-515.
(8) Breuste, J., Niemelä, J., & Snep, R. P. (2008). Applying landscape ecological principles in urban environments. Landscape Ecology, 23(10), 1139-1142.
(9) Futuyma, D. J. (2013). Evolution (3th ed.), Sunderland, Massachusetts: SINAUR ASSOCIATES, INC.
(10) Barton, N. H., & Slatkin, M. (1986). A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56(3), 409-415.
(11) Colosimo, P. F., Hosemann, K. E., Balabhadra, S., Villarreal, G., Dickson, M., Grimwood, J., ... & Kingsley, D. M. (2005). Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. science, 307(5717), 1928-1933.
(12) Rausher, M. D. (2001). Co-evolution and plant resistance to natural enemies.Nature, 411(6839), 857-864.
(13) Ingelman-Sundberg, M. (2005). Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. The pharmacogenomics journal, 5(1), 6-13.
(14) Manel, S., & Holderegger, R. (2013). Ten years of landscape genetics. Trends in ecology & evolution, 28(10), 614-621.
(15) Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P., & Tsigaridas, K. (2011). Trees as bioindicator of heavy metal pollution in three European cities.Environmental Pollution, 159(12), 3560-3570.
(16) Chen, T. B., Zheng, Y. M., Lei, M., Huang, Z. C., Wu, H. T., Chen, H., ... & Tian, Q. Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542-551.
(17) Top, E. M., & Springael, D. (2003). The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Current Opinion in Biotechnology, 14(3), 262-269.
(18) Dighton, J., Tugay, T., & Zhdanova, N. (2008). Fungi and ionizing radiation from radionuclides. FEMS microbiology letters, 281(2), 109-120.
(19) Whitehead, A., Triant, D. A., Champlin, D., & Nacci, D. (2010). Comparative transcriptomics implicates mechanisms of evolved pollution tolerance in a killifish population. Molecular ecology, 19(23), 5186-5203.
(20) Shaw, A. J. (1994). Adaptation to metals in widespread and endemic plants.Environmental Health Perspectives, 102(Suppl 12), 105.
(21) Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711-726.
(22) Schat, H., & Vooijs, R. (1997). Multiple tolerance and co tolerance to heavy metals in Silene vulgaris: a co segregation analysis. New Phytologist, 136(3), 489-496.
(23) Cheptou, P. O., Carrue, O., Rouifed, S., & Cantarel, A. (2008). Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta.Proceedings of the National Academy of Sciences, 105(10), 3796-3799.
(24) Holsinger, J. R. (1988). Troglobites: the evolution of cave-dwelling organisms.American Scientist, 76, 146-153.
(25) Byrne, K., & Nichols, R. A. (1999). Culex pipiens in London Underground tunnels: differentiation between surface and subterranean populations. Heredity,82(1), 7-15.
(26) Fonseca, D. M., Keyghobadi, N., Malcolm, C. A., Mehmet, C., Schaffner, F., Mogi, M., ... & Wilkerson, R. C. (2004). Emerging vectors in the Culex pipiens complex. Science, 303(5663), 1535-1538.
(27) Vinogradova, E. B., & Shaikevich, E. V. (2007). Morphometric, physiological and molecular characteristics of underground populations of the urban mosquito Culex pipiens Linnaeus f. molestus Forskål (Diptera: Culicidae) from several areas of Russia. Eur Mosq Bull, 22, 17-24.
(28) Harris, S. E., Munshi-South, J., Obergfell, C., & O'Neill, R. (2013). Signatures of rapid evolution in urban and rural transcriptomes of white-footed mice (Peromyscus leucopus) in the New York metropolitan area. PloS one, 8(8), e74938.
References - Garbage gobblers
(1) CBS. Bevolkingsontwikkeling; regio per maand.
Link
(2) CBS. Huishoudelijk afval per gemeente per inwoner.
Link
(3) Gallardo-Lara F, Nogales R. Effect of the application of town refuse compost on the soil-plant
system: A review. Biol Wastes. 1987;19(1):35-62. Accessed 7 November 2015. doi:
10.1016/0269-7483(87)90035-8.
(4) Rahman MM, Begum MF, Khan MSI, Rahman MA, Alam MF. Isolation, identification and
cultural optimization of native bacteria isolates as a potential bioconversion agent. J Appl Sci
Res. 2009;5(10):1652-1662. Accessed 7 November 2015.
(5) Singh J. Habitat preferences of selected indian earthworm species and their efficiency in
reduction of organic materials. Soil Biol Biochem. 1997;29(3-4):585-588. Accessed 7 November
2015. doi: 10.1016/S0038-0717(96)00183-6.
(6) de Bertoldi M, Vallini G, Pera A. The biology of composting: A review. Waste Management &
Research. 1983;1(1):157-176. doi: 10.1177/0734242X8300100118.
(7) Pedro MS, Haruta S, Nakamura K, Hazaka M, Ishii M, Igarashi Y. Isolation and
characterization of predominant microorganisms during decomposition of waste materials in a
field-scale composter. J Biosci Bioeng. 2003;95(4):368-373. Accessed 7 November 2015. doi:
10.1263/jbb.95.368.
(8) Fischer G., Schwalbe R., Moller M., Ostrowski R., Dott W. Species-specific production of
microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility.
Chemosphere. 1999;39(5):795-810. Accessed 30 December 2015. doi: 10.1016/S0045-
6535(99)00015-6.
(9) Ryckeboer J, Mergaert J, Vaes K, et al. A survey of bacteria and fungi occurring during
composting and self-heating processes. Ann Microbiol. 2003;53(4):349-410. Accessed 7
November 2015.
(10) Sundberg C, Smars S, Jonsson H. Low pH as an inhibiting factor in the transition from
mesophilic to thermophilic phase in composting. Bioresour Technol. 2004;95(2):145-150.
Accessed 7 November 2015. doi: 10.1016/j.biortech.2004.01.016.
(11) Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J. Microbiological aspects of
biowaste during composting in a monitored compost bin. J Appl Microbiol. 2003;94(1):127-137.
Accessed 7 November 2015. doi: 10.1046/j.1365-2672.2003.01800.x.
(12) Atchley S.H., Clark J.B. Variability of temperature, pH, and moisture in an aerobic
composting process. Appl Environ Microbiol. 1979;38(6):1040-1044. Accessed 30 December
2015.
(13) Klamer M, Bååth E. Microbial community dynamics during composting of straw material
studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol. 1998;27(1):9-20. Accessed
7 November 2015. doi: 10.1016/S0168-6496(98)00051-8.
(14) Haruta S, Nakayama T, Nakamura K, et al. Microbial diversity in biodegradation and
reutilization processes of garbage. J Biosci Bioeng. 2005;99(1):1-11. Accessed 7 November
2015. doi: 10.1263/jbb.99.1.
(15)Puyuelo B., Gea T., Sánchez A. GHG emissions during the high-rate production of compost
using standard and advanced aeration strategies. Chemosphere. 2014;109:64-70. Accessed 30
December 2015. doi: 10.1016/j.chemosphere.2014.02.060.
(16) He P., Zhao L., Zheng W., Wu D., Shao L. Energy balance of a biodrying process for
organic wastes of high moisture content: A review. Dry Technol. 2013;31(2):132-145. Accessed
30 December 2015. doi: 10.1080/07373937.2012.693143.
(17) Alexander M. Introduction to soil microbiology. ; 1977.
(18) Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M. Accumulation and fragmentation of
plastic debris in global environments. Philos Trans R Soc B Biol Sci. 2009;364(1526):1985-
1998. Accessed 30 December 2015. doi: 10.1098/rstb.2008.0205.
(19) Zheng Y, Yanful EK, Bassi AS. A review of plastic waste biodegradation. Crit Rev
Biotechnol. 2005;25(4):243-250. Accessed 7 November 2015. doi:
10.1080/07388550500346359.
(20) Jeon H.J., Kim M.N. Degradation of linear low density polyethylene (LLDPE) exposed to UV-
irradiation. Eur Polym J. 2014;52(1):146-153. Accessed 30 December 2015. doi:
10.1016/j.eurpolymj.2014.01.007.
(21) Rodriguez-Gonzalez F.J., Ramsay B.A., Favis B.D. High performance LDPE/thermoplastic
starch blends: A sustainable alternative to pure polyethylene. Polymer. 2003;44(5):1517-1526.
Accessed 30 December 2015. doi: 10.1016/S0032-3861(02)00907-2.
(22) Jakubowicz I. Evaluation of degradability of biodegradable polyethylene (PE). Polym
Degradation Stab. 2003;80(1):39-43. Accessed 30 December 2015. doi: 10.1016/S0141-
3910(02)00380-4.
(23) Restrepo-Flórez J-, Bassi A, Thompson MR. Microbial degradation and deterioration of
polyethylene - A review. Int Biodeterior Biodegrad. 2014;88:83-90. Accessed 7 November 2015.
doi: 10.1016/j.ibiod.2013.12.014.
(24) Sanin S.L., Sanin F.D., Bryers J.D. Effect of starvation on the adhesive properties of
xenobiotic degrading bacteria. Process Biochem. 2003;38(6):909-914. Accessed 30 December
2015. doi: 10.1016/S0032-9592(02)00173-5.
(25) Suzuki T., Endo K., Ito M., Tsujibo H., Miyamoto K., Inamori Y. A thermostable laccase from
streptomyces lavendulae REN-7: Purification, characterization, nucleotide sequence, and
expression. Biosci Biotechnol Biochem. 2003;67(10):2167-2175. Accessed 30 December 2015.
doi: 10.1271/bbb.67.2167.
(26) Awolusi O.O., Kumari S.K.S., Bux F. Ecophysiology of nitrifying communities in membrane
bioreactors. Int J Environ Sci Technol. 2014;12(2):747-762. Accessed 30 December 2015. doi:
10.1007/s13762-014-0551-x.
(27) Primer for Municipal Waste Water Treatment Systems. EPA. 2004.
(28) Christoulas D.G., Yannakopoulos P.H., Andreadakis A.D. An empirical model for primary
sedimentation of sewage. Environ Int. 1998;24(8):925-934. Accessed 30 December 2015. doi:
10.1016/S0160-4120(98)00076-2.
(29) Ni B.-J., Yu H.-Q. Microbial products of activated sludge in biological wastewater treatment
systems: A critical review. Crit Rev Environ Sci Technol. 2012;42(2):187-223. Accessed 30
December 2015. doi: 10.1080/10643389.2010.507696.
(30) Moreno-Vivián C., Cabello P., Martínez-Luque M., Blasco R., Castillo F. Prokaryotic nitrate
reduction: Molecular properties and functional distinction among bacterial nitrate reductases. J
Bacteriol. 1999;181(21):6573-6584. Accessed 30 December 2015.
(31) Nitrification. EPA. 2002.
(32) Antoniou P., Hamilton J., Koopman B., et al. Effect of temperature and ph on the effective
maximum specific growth rate of nitrifying bacteria. Water Res. 1990;24(1):97-101. Accessed 30
December 2015. doi: 10.1016/0043-1354(90)90070-M.
References - Urban intruders
(1) Department of Ancient Near Eastern Art (October 2003). 'Uruk: The First City.' In: Heilbrunn Timeline of Art History. New York: The Metropolitan Museum of Art, 2000-. Retrieved from: http://www.metmuseum.org/toah/hd/uruk/hd_uruk.htm
(2) Gibb, J. A. (1990). The European rabbit Oryctolagus cuniculus. JA Chapman e JEC Flux (a cura di), Rabbits, Hares and Pikas-Staus Survey and Conservation Action Plan. IUCN/SSC Lagomorph Specialist Group, 116-120.
(3) Richardson, D. M., & Ricciardi, A. (2013). Misleading criticisms of invasion science: a field guide. Diversity and Distributions, 19(12), 1461-1467.
(4) Hernández-Brito, D., Carrete, M., Popa-Lisseanu, A. G., Ibáñez, C. and Tella, J. L. (2014) Crowding in the City: Losing and Winning Competitors of an Invasive Bird. PLoS ONE 9(6): e100593.
(5) Shine, R. (2010). The ecological impact of invasive cane toads (Bufo marinus) in Australia. The Quarterly Review of Biology, 85(3), 253-291.
(6) Urban, M. C., Phillips, B. L., Skelly, D. K., & Shine, R. (2008). A toad more traveled: the heterogeneous invasion dynamics of cane toads in Australia.The American Naturalist, 171(3), E134-E148.
(7) van Ham, C., Genovesi, P. and Scalera, R. (2013). Invasive alien species: The urban dimension. Case studies on strengthening local action in Europe. Brussels, Belgium: IUCN European Union Representative Office. 103pp.
(8) Strubbe, D. and Matthysen, E. (2007). Invasive ring-necked parakeets Psittacula krameri in Belgium: habitat selection and impact on native birds. Ecography 30: 578-588.
(9) Forseth, I.N. and Innis, A.F., (2012). Kudzu (Pueraria montana): History, Physiology, and Ecology Combine to Make a Major Ecosystem Threat. Critical Reviews in Plant Sciences, 23:5, 401-413.
(10) McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological conservation, 127(3), 247-260.
(11) Pârâu, L. G., Strubbe, D., Mori, E., Menchetti, M., Ancillotto, L., van Kleunen, A., White, R.L. Luna, A., Hernández-Brito, D., Le Louarn, M., Clergeau, P., Albayrak, T., Franz, D., Braun, M. P., Schroeder, J., and Wink, M. (2016). Rose-ringed Parakeet Psittacula krameri Populations and Numbers in Europe: A Complete Overview. The Open Ornithology Journal (pp. 1-13). Bentham Open.
(12) Khan, H. A., Beg, M. A. and Khan, A. A. (2004). Breeding habitats of the Rose-ringed Parakeet (Psittacula krameri) in the cultivations of central Punjab. Pakistan Journal of Zoology 36(2): 133-138.
(13) Clergeau, P. and Vergnes, A. (2011). Bird feeders may sustain feral Rose-ringed parakeets Psittacula krameri in temperate Europe. Wildlife Biology, 17(3): 248-252.
(14) Menchetti, M., Mori, E., & Angelici, F. M. (2016). Effects of the recent world invasion by ring-necked parakeets Psittacula krameri. In Problematic Wildlife (pp. 253-266). Springer International Publishing.
(15) Butler, C. J. (2003). Population Biology of the Introduced Rose-ringed Parakeet Psittacula krameri in the UK. PhD thesis. University of Oxford.
(16) Newson, S.E., Johnston, A., Parrott, D. and Leech, D.I. (2011). Evaluating the population-level impact of an invasive species, Ring-necked Parakeet Psittacula krameri, on native avifauna. Ibis, 152: 509-516.
(17) Hernández-Brito, D., Luna, Á., Carrete, M. and Tella, J. L (2014). Alien rose-ringed parakeets (Psittacula krameri) attack black rat (Rattus rattus) sometimes resulting in death. Hystrix, the Italian journal of Mammalogy, 25(2): 121-123.
(18) Peck, H.L., Pringle, H.E., Marshall, H.H., Owens, I.P.F. and Lord, A.M. (2014). Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds. Behavioral Ecology 25(3): 582-590.
(19) Donovan, T. (2015). Feral Cities: Adventures with Animals in the Urban Jungle. Chicago Review Press.
(20) Sáez-Royuela, C., & Telleriia, J. L. (1986). The increased population of the wild boar (Sus scrofa L.) in Europe. Mammal Review, 16(2), 97-101.
(21) New York Invasive Species Information (n.d.). Feral Swine (Sus scrofa). Retrieved from: http://www.nyis.info/index.php?action=invasive_detail&id=18
(22) Massei, G., Kindberg, J., Licoppe, A., Gačić, D., Šprem, N., Kamler, J., ... & Cellina, S. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest management science, 71(4), 492-500.
(23) Cahill, S., Llimona, F., Cabañeros, L., & Calomardo, F. (2012). Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Animal Biodiversity and Conservation, 35(2), 221-233.
(24) Ridgley, H. (2006, April 4). The Boar Wars - National Wildlife Federation. Retrieved from http://www.nwf.org/news-and-magazines/national-wildlife/animals/archives/2006/the-boar-wars.aspx
(25) Massei, G., Cowan, D. P., Coats, J., Bellamy, F., Quy, R., Pietravalle, S., ... & Miller, L. A. (2012). Long-term effects of immunocontraception on wild boar fertility, physiology and behaviour. Wildlife Research, 39(5), 378-385.
(26) Long, D. B., Campbell, T. A., & Massei, G. (2010). Evaluation of feral swine-specific feeder systems. Rangelands, 32(2), 8-13.
(27) Bateman, P. W., & Fleming, P. A. (2012). Big city life: carnivores in urban environments. Journal of Zoology, 287(1), 1-23.
(28) Harris, S., & Rayner, J. M. V. (1986). A discriminant analysis of the current distribution of urban foxes (Vulpes vulpes) in Britain. The Journal of Animal Ecology, 605-611.
(29) Harris, S., & Rayner, J. M. V. (1986). Urban fox (Vulpes vulpes) population estimates and habitat requirements in several British cities. The Journal of Animal Ecology, 575-591.
(30) Harris, S. (1981). The food of suburban foxes (Vulpes vulpes), with special reference to London. Mammal Review, 11(4), 151-168.
(31) Contesse, P., Hegglin, D., Gloor, S., Bontadina, F., & Deplazes, P. (2004). The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mammalian Biology-Zeitschrift für Säugetierkunde, 69(2), 81-95.
(32) Mackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71-79.
(33) BBC News (2010, June 7). Mother's 'nightmare' after baby twins 'mauled' by fox. Retrieved from: http://www.bbc.com/news/10251349
(34) Wildlife Removal Animal Control (n.d.) Are Fox Dangerous To People Or Pets? Retrieved from: http://www.wildlife-removal.com/foxdangerous.html
References - Plastic soup, anyone?
(1) Andrady, A. L. (2011). Microplastics in the marine environment. Marine pollution bulletin, 62(8), 1596- 1605.
(2)Gregory, M. R. (1996). Plastic 'scrubbers' in hand cleansers: a further (and minor) source for marine pollution identified. Marine Pollution Bulletin, 32(12), 867-871.
(3) Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine pollution bulletin,58(8), 1225-1228.
(4) Moore, C. J. (2008). Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environmental research, 108(2), 131-139.
(5) http://education.nationalgeographic.org/encyclopedia/ocean-gyre/. Accessed on 7-5-2016
(6) Arthur, C., Baker, J., & Bamford, H. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008.
References - Bioplastics to the rescue!
(1) Álvarez-Chavez, C. R., Edwards, S., Moure-Eraso, R., &Geiser, K. (2012). Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. Journal of Cleaner Production, 23(1), 47-56.
(2) Amulya, K., Jukuri, S., & Mohan, S. V. (2015). Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresource technology, 188, 231-239.
(3) Azapagic, A., Emsley, A., &Hamerton, I. (2003). Polymers: the environment and sustainable development. John WileyandSons.
(4) Bolck, C. (2006). Bioplastics. Groene Grondstoffen Series. Agrotechnology& Food Sciences Group, Wageningen. ISBN 90-8585-014-2.
(5) Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential Health Impact of Environmentally Released Micro-and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmentalscience&technology, 49(15), 8932-8947.
(6) Cruz-Romero, M., & Kerry, J. P. (2008). Crop-based biodegradable packaging and its environmental implications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(82), 25.
(7) Endo, S., Takizawa, R., Okuda, K., Takada, H., Chiba, K., Kanehiro, H., ... & Date, T. (2005). Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Marine Pollution Bulletin, 50(10), 1103-1114.
(8) Gumel, A. M., Annuar, M. S. M., &Chisti, Y. (2013). Recent advances in the production, recovery and applications of polyhydroxyalkanoates. Journal of Polymersandthe Environment, 21(2), 580-605.
(9) Jain, R., & Tiwari, A. (2015). Biosynthesis of planet friendly bioplastics using renewable carbon source. Journal of Environmental Health Scienceand Engineering, 13(1), 11.
(10) Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of bioplastic packaging materials: an overview. Macromolecularbioscience, 7(3), 255-277.
(11) Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current opinion in microbiology, 13(3), 321-326.
(12) Koch, H. M., & Calafat, A. M. (2009). Human body burdens of chemicals used in plastic manufacture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2063-2078
(13) Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiologyandmolecularbiology reviews, 63(1), 21-53.
(14) Pilla, S. (Ed.). (2011). Handbook of bioplastics and biocomposites engineering applications (Vol. 81). John Wiley&Sons.
(15) PlasticsEurope, E. U. P. C., & EPRO, E. (2015) Plastics - the Facts 2015 An analysis of European plastics production, demand and waste data file:///C:/Users/4190211/AppData/Local/Google/Chrome/Downloads/FinalPlasticsTheFacts2015_30p_25112015.pdf (geraadpleegd 3-12-2015)
(16) Sanchez-Garcia, M. D., Lopez-Rubio, A., & Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science& Technology, 21(11), 528-536.
(17) Zhang, Y., Rempel, C., &Liu, Q. (2014). Thermoplastic starch processing and characteristics - a review. Critical reviews in food scienceandnutrition, 54(10), 1353-1370.
References - Chasing bats in Utrecht
(1) Catto, C. M. C., Racey, P. A., & Stephenson, P. J. (1995). Activity patterns of the serotine bat(Eptesicus serotinus) at a roost in southern England.Journal of Zoology, 235(4), 635-644.
(2) Harbusch, C. (2003). Aspects of the ecology of serotine bats (Eptesicus serotinus, Schreber1774) in contrasting landscapes in southwest Germany and Luxembourg (Doctoraldissertation, University of Aberdeen).
(3) Catto, C. M. C., Hutson, A. M., Raccey, P. A., & Stephenson, P. J. (1996). Foraging behaviourand habitat use of the serotine bat (Eptesicus serotinus) in southern England. Journal of Zoology, 238(4), 623-633.
(4) Kervyn, T., & Libois, R. (2008). The diet of the serotine bat: A Comparison between rural andurban environments. Belgian Journal of Zoology, 138(1), 41-49.
(5) Petrzelkova, K., & Zukal, J. (2001). Emergence behaviour of the serotine bat (Eptesicusserotinus) under predation risk. Netherlands Journal of Zoology,51(4), 395-414.
(6) Robinson, M. F., & Stebbings, R. E. (1997). Home range and habitat use by the serotine bat,Eptesicus serotinus, in England. Journal of Zoology, 243(1), 117-136.
(7) Catto, C. (1993). Aspects of ecology and behaviour of the serotine bat (Eptesicus serotinus)(Doctoral dissertation, University of Aberdeen).