Ice and Climate

 

Publications

2021

  • Anderson, B., A.N. Mackintosh, R. Dadić, J. Oerlemans, C. Zammit, A. Doughty, A. Sood, and B. Mullan 2021. Modelled response of debris-covered and lake-calving glaciers to climate change, Kā Tiritiri o te Moana/Southern Alps, New Zealand. Global Planet. Change, 205, 103593. Paper doi:10.1016/j.gloplacha.2021.103593.
  • Berends, C.J., B. de Boer and R.S.W. van de Wal, 2021. Reconstructing the evolution of ice sheets, sea level and atmospheric CO2 during the past 3.6 Myears, Clim. past, 17(1), 361-377. Paper doi:10.5194/cp-17-361-2021. Data doi:10.5281/zenodo.3793592.
  • Berends, C.J., H. Goelzer, and R.S.W. Van De Wal, 2021. The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0). Geosci. Model. Dev., 14(5), 2443-2470. Paper doi:10.5194/gmd-14-2443-2021.
  • Berends, C.J., P. Köhler, L.J. Lourens, and R.S.W. van de Wal, 2021. On the cause of the mid-Pleistocene transition. Rev. Geophys., 59, e2020RG000727. Paper doi:10.1029/2020RG000727.
  • Datta, R. T., and B. Wouters, 2021. Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery. The Cryosphere, 15(11), 5115-5132. Paper doi:10.5194/tc-15-5115-2021.
  • Druckenmiller, M.L., et. al., 2021. The Arctic. [in “State of the Climate in 2020”]. Bull. Amer. Meteor. Soc., 102(8), S239-S286. . Paper doi:10.1175/BAMS-D-21-0086.1.
  • Edwards, T.L., et al., 2021. Projected land ice contributions to twenty-first-century sea level rise, Nature, 593, 74–82. Paper doi:10.1038/s41586-021-03302-y.
  • Felikson, D., G.A. Catania, T.C. Bartholomaus, M. Morlighem, and B.P.Y. Noël, 2021. Steep glacier bed knickpoints mitigate inland thinning in Greenland. Geophys. Res. Lett., 48, e2020GL090112. Paper doi:10.1029/2020GL090112. Data doi:10.5281/zenodo.4284759.
  • Hansen, K., M. Truffer, A. Aschwanden, K. Mankoff, M. Bevis, A. Humbert, M.R. van den Broeke, B. Noël, A. Bjørk, W. Colgan, K.H. Kjær, S. Adhikari, V. Barletta and S.A. Khan, 2021. Estimating ice discharge at Greenland's three largest outlet glaciers using local bedrock uplift, Geophys. Res. Lett., 48, e2021GL094252. Paper doi:10.1029/2021GL094252.
  • Hinkel, J., L. Feyen, M. Hemer, G. Le Cozannet, D. Lincke, M. Marcos, L. Mentaschi, J.L. Merkens, H. de Moel, S. Muis, R.J. Nicholls, A.T. Vafeidis, R.S.W. van de Wal, M.I. Vousdoukas, T. Wahl, P.J. Ward, and C. Wolff, 2021. Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth's Future, 9(7), e2020EF001882. Paper doi:10.1029/2020EF001882.
  • Hu, Z., P. Kuipers Munneke, S. Lhermitte, M. Izeboud and M.R. van den Broeke, 2021. Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf, The Cryosphere, 15, 5639–5658. Paper doi:10.5194/tc-15-5639-2021. Data doi:10.5281/zenodo.5769661.
  • Huai, B., M.R. van den Broeke, C.H. Reijmer and J. Cappellen, 2021. Quantifying Rainfall in Greenland: A Combined Observational and Modeling Approach, J. Appl. Meteorol. Climatol., 60(8), 1171–1188. Paper doi:10.1175/JAMC-D-20-0284.1.
  • Jakobs, C.L., C.H. Reijmer, M.R. van den Broeke, W.J. van de Berg, and J.M. van Wessem, 2021. Spatial variability of the snowmelt–albedo feedback in Antarctica. J. Geophys. Res.: Earth Surface, 125. Paper doi:10.1029/2020JF005696. Data doi:10.5281/zenodo.3836043.
  • Jiang, Y., X. Wu, M.R. van den Broeke, P. Kuipers Munneke, S.B. Simonsen, W. van der Wal and B.L. Vermeersen, 2021. Assessing global present-day surface mass transport and glacial isostatic adjustment from inversion of geodetic observations, J. Geophys. Res.: Solid Earth, 126, e2020JB020713. Paper doi:10.1029/2020JB020713.
  • Karabil, S., E.H. Sutanudjaja, E. Lambert, M.F.P. Bierkens, and R.S.W. Van de Wal, 2021. Contribution of Land Water Storage Change to Regional Sea-Level Rise Over the Twenty-First Century. Front. Earth Sci., 9(627648). Paper doi:10.3389/feart.2021.627648.
  • Keenan, E., N. Wever, M. Dattler, J.T.M. Lenaerts, B. Medley, P. Kuipers Munneke, and C. Reijmer, 2021. Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density, The Cryosphere, 15. Paper doi:10.5194/tc-15-1065-2021.
  • Laffin, M.K., C.S. Zender, S. Singh, J. Van Wessem, C.J.P.P. Smeets, and C.H. Reijmer, 2021. Climatology and evolution of the antarctic peninsula föhn wind‐induced melt regime from 1979‐2018. J. Geophys. Res.: Atmospheres, 126. Paper doi:10.1029/2020JD033682. Data doi:10.5281/zenodo.3677642.
  • Lambert, E., D. Le Bars, H. Goelzer, and R.S.W. van de Wal, 2021. Correlations between sea‐level components are driven by regional climate change. Earth's Future, 9, e2020EF001825. Paper doi:10.1029/2020EF001825. Data doi:10.5281/zenodo.4049932.
  • Liu, W., D. Zhang, X. Qin, M.R. van den Broeke, Y. Jiang, D. Yang, and M. Ding, 2021. Monsoon clouds control the summer surface energy balance on East Rongbuk glacier (6,523 m above sea level), the northern slope of Mt. Qomolangma (Everest), J. Geophys. Res.: Atmos., 126, e2020JD033998. Paper doi:10.1029/2020JD033998.
  • Mankoff, K.D., X. Fettweis, P.L. Langen, M. Stendel, K.K. Kjeldsen, N.B. Karlsson, B. Noël, M.R. van den Broeke, A. Solgaard, W. Colgan, J.E. Box, S.B. Simonsen, M.D. King, A.P. Ahlstrøm, S.B. Andersen and R.S. Fausto, 2021. Greenland ice sheet mass balance from 1840 through next week, Earth Syst. Sci. Data, 13, 5001–5025. Paper doi:10.5194/essd-13-5001-2021. Data doi:10.22008/FK2/OHI23Z.
  • Marchenko, S.A., W.J.J. van Pelt, R. Pettersson, V.A. Pohjola, and C.H. Reijmer<, 2021. Water content of firn at lomonosovfonna, svalbard, derived from subsurface temperature measurements. J. Glaciol., 67(265), 921 - 932. Paper doi:10.1017/jog.2021.43.
  • Matsuoka, K., A. Skoglund, G. Roth, J. de Pomereu, H. Griffiths, R. Headland, B. Herried, K. Katsumata, A. Le Brocq, K. Licht, F. Morgan, P. D. Neff, C. Ritz, M. Scheinertl, T. Tamura, A. van de Putte, M. R. van den Broeke, A. von Deschwanden C. Deschamps-Berger, B. van Liefferinge, S. Tronstad and Y. Melvær, 2021. Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands, Environ. Model. Softw., 140, 105015. Paper doi:10.1016/j.envsoft.2021.105015.
  • Meredith, M.P., S.E. Stammerjohn, H.W. Ducklow, M.J. Leng, C. Arrowsmith, J.A. Brearley, H.J. Venables, M. Barham, J.M. van Wessem, O. Schofield and N. Waite, 2021. Local- and large-scale drivers of variability in the coastal freshwater budget of the Western Antarctic Peninsula. J. Geophys. Res.: Oceans. 126, e2021JC017172. Paper doi:10.1029/2021JC017172. LINK to data.
  • Mottram, R.H., N. Hansen, C. Kittel, M. van Wessem, C. Agosta, C. Amory, F. Boberg, W.J. van de Berg, X. Fettweis, A. Gossart, N.P.M. van Lipzig, E. van Meijgaard, A. Orr, T. Phillips, @. Webster, S.B. Simonsen, and N. Souverijns, 2021. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. The Cryosphere, 15(8), 3751-3784. Paper doi:10.5194/tc-15-3751-2021.
  • Navari, M., S.A. Margulis, M. Tedesco, X. Fettweis, and R.S.W. van de Wal, 2021. Reanalysis Surface Mass Balance of the Greenland Ice Sheet Along K-Transect (2000–2014). Geophys. Res. Lett., 48(17), e2021GL094602 Paper doi:10.1029/2021GL094602.
  • Nienhuis, J.H., and R.S.W. Wal, 2021. Projections of global delta land loss from sea‐level rise in the 21st century. Geophys. Res. Lett., 48(14), e2021GL093368 Paper doi:10.1029/2021GL093368.
  • Noël, B., L. van Kampenhout, J.T.M. Lenaerts, W.J. van de Berg, and M.R. van den Broeke, 2021. A 21 st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophys. Res. Lett., 48, e2020GL090471. Paper doi:10.1029/2020GL090471. Data doi:10.5281/zenodo.4289958.
  • Oerlemans, J., S. Balasubramanian, C. Clavuot and F. Keller, 2021. Brief communication: Growth an decay of an ice stupa in alpine conditions – a simple model driven by energy-flux observations over a glacier surface. The Cryosphere, 15, 3007–3012 Paper doi:10.5194/tc-15-3007-2021.
  • Orr, A., A. Kirchgaessner, J. King, T. Phillips, E. Gilbert, A. Elvidge, M. Weeks, A. Gadian, P. Kuipers Munneke, M.R. van den Broeke, S. Webster and D. McGrath, 2021, Comparison of kilometre and sub-kilometre scale simulations of a foehn wind event over the Larsen C Ice Shelf, Antarctic Peninsula using the Met Office Unified Model (MetUM), Q. J. Roy. Meteor. Soc., 147(739), 3472–3492. Paper doi:10.1002/qj.4138.
  • Payne, A.J., et al., 2021. Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett., 48, e2020GL091741. Paper doi:10.1029/2020GL091741. Data doi:10.5281/zenodo.4498330.
  • Pronk, J.B., T. Bolch, O. King, B. Wouters, and D.I. Benn, 2021. Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region. The Cryosphere, 15(12), 5577-5599 Paper doi:10.5194/tc-15-5577-2021. Data doi:10.5281/zenodo.4537289.
  • Recinos, B., F. Maussion, B. Noël, M. Möller, and B. Marzeion, 2021. Calibration of a frontal ablation parameterisation applied to Greenland's peripheral calving glaciers. J. Glaciol., 67(266), 1177-1189. Paper doi:10.1017/jog.2021.63.
  • Slater, T., A. Shepherd, M. McMillan, A. Leeson, L. Gilbert, A. Muir, P. Kuipers Munneke, B. Noël, X. Fettweis, M.R. van den Broeke and K. Briggs, 2021. Increased variability in Greenland Ice Sheet runoff from satellite observations, Nature Commun., 12, 6069. Paper doi:10.1038/s41467-021-26229-4. Data doi:10.5281/zenodo.5562210.
  • Spergel, J.J., J. Kingslake, T.Creyts, M. van Wessem, H.A. Fricker, 2021. Surface meltwater drainage and ponding on Amery Ice Shelf, East Antarctica, 1973–2019. J. Glaciol., 67(266), 985–998. Paper doi:10.1017/jog.2021.46.
  • Tuckett, P.A., J.C. Ely, A.J. Sole, J.M. Lea, S.J. Livingstone, J.M. Jones, and J.M. van Wessem, 2021. Automated mapping of the seasonal evolution of surface meltwater and its links to climate on the Amery Ice Shelf, Antarctica, The Cryosphere, 15, 5785–5804, https://doi.org/, 2021. Paper doi:10.5194/tc-15-5785-2021.
  • Van Dalum, C.T., W.J. van de Berg, and M.R. van den Broeke, 2021. Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet. The Cryopshere, 15, 1823–1844. Paper doi:10.5194/tc-15-1823-2021. Data doi:10.5281/zenodo.4013855.
  • Van Tiggelen, M., P.C.J.P. Smeets, C.H. Reijmer, B. Wouters, J.F. Steiner, E.J. Nieuwstraten, W.W. Immerzeel and M.R. van den Broeke, 2021. Mapping the aerodynamic roughness of the Greenland Ice Sheet surface using ICESat-2: evaluation over the K-transect, The Cryosphere, 15, 2601–2621. Paper doi:10.5194/tc-15-2601-2021. Data doi:10.5281/zenodo.4386867.
  • Van Wessem, J.M., C.R. Steger, N. Wever, and M.R. van den Broeke, 2021. An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979-2016. The Cryosphere 15, 695–714. Paper doi:10.5194/tc-15-695-2021. LINK to data.
  • Verjans, V., A.A. Leeson, M. McMillan, C.M. Stevens, J.M. van Wessem, W.J. van de Berg, M.R. van den Broeke, C. Kittel, C. Amory , X. Fettweis, N. Hansen, F. Boberg and R. Mottram, 2021. Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach, Geophys. Res. Lett., 48, e2020GL092060. Paper doi:10.1029/2020GL092060. Data doi:10.5281/zenodo.4515142.
  • Vijay, S., M. King, I. Howat, A. Solgaard, S. Khan, S., and B. Noël, 2021. Greenland ice-sheet wide glacier classification based on two distinct seasonal ice velocity behaviors. J. Glaciol., 67(266), 1241-1248. Paper doi:10.1017/jog.2021.89.
  • Wang, Y., M. Ding, C.H. Reijmer, C.J.P.P. Smeets, S. Hou, and C. Xiao, 2021. The AntSMB dataset: a comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet, Earth Syst. Sci. Data, 13, 3057–3074. Paper doi:10.5194/essd-13-3057-2021. Data doi:/10.11888/Glacio.tpdc.271148.
  • Willen, M.O., T. Broerse, A. Groh, B. Wouters, P. Kuipers Munneke, M. Horwath, M.R. van den Broeke, and L. Schröder, 2021. Separating long-term and short-term mass changes of Antarctic ice drainage basins: a coupled state space analysis of satellite observations and model products. J. Geophys. Res.: Earth Surface, 126, e2020JF005966. Paper doi:10.1029/2020JF005966.
  • Wood, M., E. Rignot, I. Fenty, L. An, A. Bjørk, M. van den Broeke, C. Cai,E. Kane, D. Menemenlis, R. Millan, M. Morlighem, J. Mouginot, B. Noël, B. Scheuchl, I. Velicogna, J.K. Willis, and H. Zhang, 2021. Ocean forcing drives glacier retreat in Greenland, Science Advances, 7(1), eaba7282. Paper doi:10.1126/sciadv.aba7282.
  • Zhang, W., Y. Wang, P.C.J.P., Smeets, C.H. Reijmer, B. Huai, J. Wang, W. Sun, 2021. Estimating near-surface climatology of multi-reanalyses over the Greenland Ice Sheet. Atmospheric Research, 259, 105676. Paper doi:10.1016/j.atmosres.2021.105676.

(44)