Ice and Climate

 

Publications

2022

  • Altena, B., A. Kääb, and B. Wouters, 2022. Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements. The Cryosphere, 16(6), 2285–2300. Paper doi:10.5194/tc-16-2285-2022.
  • Antwerpen, R., M. Tedesco, X. Fettweis, P. Alexander, and W.J. van de Berg, , 2022. Assessing bare-ice albedo simulated by MAR over the Greenland ice sheet (2000–2021) and implications for meltwater production estimates. The Cryosphere, 16(10), 4185-4199. Paper doi:10.5194/tc-16-4185-2022.
  • Balasubramanian, S., M. Hoelzle, M. Lehning, J. Bolibar, S. Wangchuk, J. Oerlemans, and F. Keller, 2022. Influence of Meteorological Conditions on Artificial Ice Reservoir (Icestupa) Evolution. Front. Earth Sci., 9, 771342. Paper doi:10.3389/feart.2021.771342.
  • Berends, C.J., H. Goelzer, T.J. Reerink, L.B. Stap, and R.S.W. Van De Wal, 2022. Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0). Geosci. Model. Dev., 15(14), 5667-5688. Paper doi:10.5194/gmd-15-5667-2022. Data doi:10.5281/zenodo.6806679.
  • Box, J.E., A. Hubbard, D.B. Bahr, W.T. Colgan, X. Fettweis, K.D. Mankoff, A. Wehrlé, B. Noël, M.R. van den Broeke, B. Wouters, A.A. Bjørk and R.S. Fausto, 2022 Greenland ice sheet climate disequilibrium and committed sea-level rise, Nature Clim. Change, 12, 808–813. Paper doi:10.1038/s41558-022-01441-2.
  • Brils, M., P. Kuipers Munneke, W.J. van de Berg, and M. van den Broeke, 2022. Improved representation of the contemporary Greenland ice sheet by IMAU-FDM v1.2G. Geosci. Model Dev., 15(18), 7121-7138. Paper doi:10.5194/gmd-15-7121-2022. Data doi:10.5281/zenodo.5172513.
  • Carter, J., A. Leeson, A. Orr, C. Kittel, and J.M. van Wessem, 2022. Variability in Antarctic surface climatology across regional climate models and reanalysis datasets, The Cryosphere, 16, 3815–3841. Paper doi:10.5194/tc-16-3815-2022. Data doi:10.5281/zenodo.6367850.
  • Cloetingh, S., et al., 2023. Coupled surface to deep Earth processes: Perspectives from TOPO-EUROPE with an emphasis on climate- and energy-related societal challenges. Global Planet. Change, 226, 1-42. Paper doi:10.1016/j.gloplacha.2023.104140.
  • Durand, G., M.R. van den Broeke, G. Le Cozannet, T.L. Edwards, P.R. Holland, N.C. Jourdain, B. Marzeion, R. Mottram, R.J. Nicholls, F. Pattyn, F. Paul, A.B.A. Slangen, R. Winkelmann, C. Burgard, C.J. van Calcar, J.-B. Barré, A. Bataille and A. Chapui, 2022. Sea-level rise: from global perspectives to local services, Front. Mar. Sci., 8, . Paper doi:10.3389/fmars.2021.709595.
  • Hansen, N., S.B. Simonsen, F. Boberg, C. Kittel, A. Orr, N. Souverijns, J.M. van Wessem, and R. Mottram, 2022. Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet, The Cryosphere, 16, 711–718. Paper doi:10.5194/tc-16-711-2022. Data doi:10.11583/DTU.16438236.v1.
  • Hofsteenge, M.G., N.J. Cullen, C.H. Reijmer, M.R. van den Broeke, M. Katurji and J.F. Orwin, 2022. The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica, The Cryosphere, 16, 5041–5059. Paper doi:10.5194/tc-16-5041-2022.
  • Hu, Z., P. Kuipers Munneke, S. Lhermitte, M. Dirscherl, C. Ji and M.R. van den Broeke, 2022. FABIAN: a daily product of fractional austral-summer blue ice over Antarctica during 2000–2021 based on MODIS imagery using Google Earth Engine, Remote Sens. Environ., 280. Paper doi:10.1016/j.rse.2022.113202.
  • Huai, B., M.R. van den Broeke, C.H. Reijmer and B. Noël, 2022. A daily 1-km resolution Greenland rainfall climatology (1958–2020) from statistical downscaling of a regional atmospheric climate model, J. Geophys. Res.: Atmospheres, 127, e2022JD036688. Paper doi:10.1029/2022JD036688.
  • Khan, S.A., J.L. Bamber, J.L., E. Rignot, V. Helm, A. Aschwanden, D.M., Holland, D.M., M.R. van den Broeke, M. King, B. Noël, M. Truffer, A. Humbert, W. Colgan, S. Vijay, P. Kuipers Munneke, 2022. Greenland mass trends from airborne and satellite altimetry during 2011–2020, J. Geophys. Res.: Earth Surface, 127,e2021JF006505. Paper doi:10.1029/2021JF006505.
  • Khan, S.A., W. Colgan, T.A. Neumann, M.R. van den Broeke, K.M. Brunt, B. Noël, J.L. Bamber, J. Hassan and A.A. Bjørk, 2022. Accelerating ice loss from peripheral glaciers in North Greenland, Geophys. Res. Lett., 49, e2022GL098915. Paper doi:10.1029/2022GL098915.
  • Koulali, A., P.L. Whitehouse, P.J. Clarke, M.R. van den Broeke, G.A. Nield, M.A. King, M.J. Bentley, B. Wouters, and T. Wilson, 2022. GPS-observed elastic deformation due to surface mass balance variability in the southern Antarctic Peninsula, Geophys. Res. Lett., 49, e2021GL097109. Paper doi:10.1029/2021GL097109.
  • Laffin, M.K., C.S. Zender, M. van Wessem, and S. Marinsek, 2022. The role of föhn winds in eastern Antarctic Peninsula rapid ice shelf collapse, The Cryosphere, 16, 1369–1381. Paper doi:10.5194/tc-16-1369-2022.
  • Le Cozannet, G., R.J. Nicholls, R.S.W. van de Wal, M.D. Sparrow, J. Li, and J. Billy, 2022. Editorial: Climate Services for Adaptation to Sea-Level Rise. Front. Mar. Sci., 9, 943079. Paper doi:10.3389/fmars.2022.943079.
  • Lee, H., N. Johnston, L.P. Nieradzik, A. Orr, R.H. Mottram, W.J. van de Berg, and P. Mooney, P., 2022. Toward Effective Collaborations between Regional Climate Modeling and Impacts-Relevant Modeling Studies in Polar Regions. Bull. Amer. Meteor. Soc., 103(8), E1866–E1874. Paper doi:10.1175/BAMS-D-22-0102.1.
  • Magnan, A.K., M. Oppenheimer, M. Garschagen, M.K. Buchanan, V.K.E. Duvat, D.L. Forbes, J.D. Ford, E. Lambert, J. Petzold, F.G. Renaud, Z. Sebesvari, R.S.W. van de Wal, J. Hinkel, and H.O. Pörtner, 2022. Sea level rise risks and societal adaptation benefits in low-lying coastal areas. Sci. Rep., 12, 10677. Paper doi:10.1038/s41598-022-14303-w.
  • Noël, B., G. Aðalgeirsdóttir, F. Pálsson, B. Wouters, S. Lhermitte, J M. Haacker and M.R. van den Broeke, 2022. North Atlantic cooling is slowing down mass loss of Icelandic glaciers, Geophys. Res. Lett., 49, e2021GL095697. Paper doi:10.1029/2021GL095697. Data doi:10.5281/zenodo.5836476.
  • Noël, B., J.T.M. Lenaerts, W.H. Lipscomb, K. Thayer-Calder, and M.R. van den Broeke, 2022. Peak refreezing in the Greenland firn layer under future warming scenarios. Nat. Commun., 13, 6870. Paper doi:10.1038/s41467-022-34524-x. Data doi:10.5281/zenodo.7100706.
  • Oerlemans, J., and F. Keller, 2022. Modelling the Vadret da Tschierva, Switzerland: calibration with the historical length record and future response to climate change. J. Glaciol., 68(267), 114-123 Paper doi:10.1017/jog.2021.82.
  • Oerlemans, J., J. Kohler and A. Luckman 20212. Modelling the mass budget and future evolution of Tunabreen, central Spitsbergen. The Cryosphere, 16, 2115-2126. Paper doi:10.5194/tc-16-2115-2022.
  • Sasgen, I., A. Salles, M. Wegmann, B. Wouters, X. Fettweis, B.P.Y. Noël, and C. Beck, 2022. Arctic glaciers record wavier circumpolar winds. Nat. Clim. Chang., 12, 249–255. Paper doi:10.1038/s41558-021-01275-4.
  • Silva, T., J. Abermann, B. Noël, S. Shahi, W.J. van de Berg, W. and Schöner, 2022. The impact of climate oscillations on the surface energy budget over the Greenland Ice Sheet in a changing climate, The Cryosphere, 16, 3375–3391. Paper doi:10.5194/tc-16-3375-2022.
  • Solgaard, A.M., D. Rapp, B.P.Y. Noël, And C.S. Hvidberg, 2022. Seasonal patterns of Greenland ice velocity from Sentinel-1 SAR data linked to runoff. Geophys. Res. Lett., 49, e2022GL100343. Paper doi:10.1029/2022GL100343.
  • Stap, L.B., C.J. Berends, M.D.W. Scherrenberg, R.S.W. Van De Wal, and E.G.W. Gasson, 2022. Net effect of ice-sheet-atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability. The Cryosphere, 16(4), 1315-1332. Paper doi:10.5194/tc-16-1315-2022. Data doi:10.1594/PANGAEA.939114.
  • Van Dalum, C.T., W.J., van de Berg and M.R. van den Broeke, 2022. Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3, The Cryosphere, 16, 1071–1089. Paper doi:10.5194/tc-16-1071-2022. Data doi:10.5281/zenodo.5512077.
  • Van de Wal, R.S.W., et al., 2022. A High-End Estimate of Sea Level Rise for Practitioners. Earth's Future, 10(11), e2022EF002751 Paper doi:10.1029/2022EF002751.
  • Wei, T., B. Noël, M. Ding, and Q. Yan, 2022. Spatiotemporal variations of extreme events in surface mass balance over Greenland during 1958–2019. Int. J. Climatol., 42(15), 8008–8023. Paper doi:10.1002/joc.7689.
  • Yang, H., U. Krebs-Kanzow, T. Kleiner, D. Sidorenko, C. Rodehacke, X. Shi, P. Gierz, L. Niu, E. Gowan, S. Hinck, X. Liu, L. Stap, and G. Lohmann, 2022. Impact of paleoclimate on present and future evolution of the Greenland Ice Sheet. PLoS One, 17(1), e0259816.
  • Zhang, X., X. Dong, J. Zeng, S. Hou, C.J.P.P. Smeets, C.H. Reijmer, Y. Wang, 2022. Spatiotemporal Reconstruction of Antarctic Near-Surface Air Temperature from MODIS Observations. J. Climate, 35(17), 5537-5553. Paper doi:10.1175/JCLI-D-21-0786.1.
  • Zhang, Q., B. Huai, M.R. van den Broeke, J. Cappelen, M. Ding, Y. Wang and W. Sun, 2022. Temporal and Spatial Variability in Contemporary Greenland Warming (1958–2020), J. Clim., 35, 2755–2767. Paper doi:10.1175/JCLI-D-21-0313.1.

(37)